Polynomials

Ex. 2.3

1.

Let $p(x)=x^{3}+3 x^{2}+3 x+1$
(1)
by remainder theorem

$$
\begin{aligned}
\text { remainder } & =p(-1) \\
& =(-1)^{3}+3(-1)^{2}+3(-1)+1 \\
& =-1+3-3+1 \\
& =4-4 \\
& =0
\end{aligned}
$$

(11) by remainder theorem

$$
\begin{aligned}
\text { remainder } & =P\left(\frac{1}{2}\right) \\
& =\left(\frac{1}{2}\right)^{3}+3\left(\frac{1}{2}\right)^{2}+3\left(\frac{1}{2}\right)+1 \\
& =\frac{1}{8}+\frac{3}{4}+\frac{3}{2}+1 \\
& =\frac{1+6+12+8}{8} \\
& =\frac{27}{8}
\end{aligned}
$$

(III) by remainder theorem

$$
\begin{aligned}
\text { remainder } & =p(0) \\
& =0^{3}+3(0)^{2}+3(0)+1 \\
& =1
\end{aligned}
$$

(iv) by remainder theorem

$$
\begin{aligned}
\text { remainder } & =p(-\pi) \\
& =(-\pi)^{3}+3(-\pi)^{2}+3(-\pi)+1 \\
& =-\pi^{3}+3 \pi^{2}-3 \pi+1
\end{aligned}
$$

(v) by remainder theorem

$$
\begin{aligned}
\text { remainder } & =p\left(\frac{-5}{2}\right) \\
& =\left(\frac{-5}{2}\right)^{3}+3\left(\frac{-5}{2}\right)^{2}+3\left(-\frac{5}{2}\right)+1 \\
& =\frac{-125}{8}+3 \times \frac{25}{4}-\frac{15}{2}+1 \\
& =\frac{-125}{8}+\frac{75}{4}-\frac{15}{2}+1 \\
& =\frac{-125+150-60+8}{8} \\
& =\frac{158-185}{8} \\
& =\frac{-27}{8}
\end{aligned}
$$

2. Let $p(x)=x^{3}-a x^{2}+6 x-a$
by remainder theorem

$$
\begin{aligned}
\text { remainder } & =p(a) \\
& =a^{3}-a(a)^{2}+6 a-a \\
& =a^{3}-\alpha^{3}+5 a \\
& =5 a
\end{aligned}
$$

3. Let $p(x)=3 x^{3}+7 x$
by remainder theorem
remainder $=P\left(-\frac{7}{3}\right)$

$$
=3\left(-\frac{7}{3}\right)^{3}+7\left(-\frac{7}{3}\right)
$$

$$
\text { or } \begin{aligned}
p\left(-\frac{7}{3}\right) & =\frac{1}{7}\left(\frac{-343}{27}\right)-\frac{49}{3} \\
& =\frac{-343}{9}-\frac{49}{3} \\
& =\frac{-343-147}{9} \\
& =-\frac{490}{9} \neq 0
\end{aligned}
$$

Since remainder $\neq 0$
$\therefore 7+3 x$ is not a factor of $p(x)$.

