Polynomials Ex. 2.1

 $\frac{2 \times 2 \cdot 2}{2 \times 1}$

 $10|4x^2 - 3x + 7$ It is a polynomial in one variable x as the exponents of the variable x are whole numbers. $10 | \chi^2 + \sqrt{2}$ It is a polynomial in one variable of as the exponent of the variable of is a whole number. (1) 3 (t, + t 12 $= 3t^{\overline{1}} + t\sqrt{2}$ It is not a polynomial in one variable as the exponent of t i.e. 1 is not a whole number. $(v) \mid \gamma + \frac{2}{\gamma}$ = | y + 2y -1 It is not a polynomial in one variable as the exponent of y i.e. (-1) is not a whole (V) $x^{10} + y^3 + t^{50}$ It is not a polynomial in one variable as there are three variables i.e. x, y and t $20|2+x^2+x$ Coefficient of x² is 1. $(1) | 2 - x^2 + x$ Roefficient of x 2 is (-1). (m) $(\pi x^2 + x)$ Coefficient of x² is II.

3. 2x³⁵+7 is a binomial of degree 35. 7y¹⁰⁰ is a monomial of degree 100. $40 5x^{3} + 4x^{2} + 7x$ Degree of polynomial is 3 as the highest power of the variable x is 3. $4 - x^2$ $\bigcirc | 4 - \gamma^2$ Degree of polynomial is 2 as the fighest power of the variable of is 2. (i) St-J7
Degree of polynomial is 1 as the highest power of the variable t is 1. $\overline{\mathbf{v}}$ $3 = 3 \times 1 = 3 \times \circ$ [: $x^{\circ} = 1$] Degree of polynomial is 0 as the fighest power of the variable x in o. <u>OR</u> Degree of the polynomial is D as it is a constant polynomial $50 x^2 + x$ It is a quadratic polynomial as the degree is 2. It is a cubic polynomial as the degree is 3. (m) x+x2+4 quadratic polynomial as the degree is 2. st is a (\mathbf{v}) 1+xIt is a linear polynomial as the degree is 1. 3t ∅ 3 ± It is a linear polynomial as the degree is 1. (v) | &²

\sim	Ite is	134 2 2	Ś	guad	rotic	holy	miol	~ 0 ~	the de	gree
VIII	7 x Lt	j.	s.	cubi		elynomic	d as	the	degree	
								-0		
							0			
						×				
					S	2				
			20	5						