Polynomials

Ex. 2.1
11) $4 x^{2}-3 x+7$

It it a polynomial in one variable x as the exponent of the variable x are whole numbers.
(ii) $y^{2}+\sqrt{2}$

It is a polynomial in one variable y as the exponent of the variable y is a whole number.
(III)

$$
3 \sqrt{t}+t \sqrt{2}
$$

$=3 t^{\frac{1}{2}}+t \sqrt{2}$
It is not a polynomial in one variable at the exponent of t ie. $\frac{1}{2}$ is not a whole number.
(iv)

$$
y+\frac{2}{y}
$$

$=y+2 y^{-1}$
It is not a polynomial in one variable at the exponent of \bar{V} ie. (-1) is not a whole number.
(v) $x^{10}+y^{3}+t^{50}$

It is not a polynomial in one variable at there are three variables i.e. x, y and t.

2(1) $2+x^{2}+x$
Coefficient of x^{2} is 1 .
(II) $2-x^{2}+x$

Coefficient of x^{2} is (-1).
(III) $\frac{\pi}{2} x^{2}+x$

Coefficient of x^{2} is $\frac{\pi}{2}$.
3. $2 x^{35}+7$ is a binomial of degree 35 . $7 y^{100}$ is a monomial of degree 100 .
$405 x^{3}+4 x^{2}+7 x$
Degree of polynomial is 3 as the highest power of the variable x is 3 .
(II) $4-y^{2}$

Degree of polynomial is 2 as the highest power of the variable y is 2 .
(III) $5 t-\sqrt{7}$

Degree of polynomial is 1 as the highest power of the variable t is 1 .
(iv) $3=3 \times 1=3 x^{0} \quad\left[\because x^{0}=1\right]$

Degree of polynomial is 0 as the highest power of the variable x in 0 .
OR Degree of the polynomial is 0 as it is a constant polynomial

5 (1) $x^{2}+x$
It is a quadratic polynomial as the degree is 2 .
(11) $x-x^{3}$

It is a cubic polynomid as the degree it 3 .
(iii) $y+y^{2}+4$

It is a quadratic polynomial as the degree it 2 .
(iV) $1+x$

It it a linear polynomial at the degree it 1 .
(v) $3 t$

It it a linear polynomial as the degree is 1 .
(VI) r^{2}

It is a quadratic polynomial as the degree is 2 .
(viii)
$7 x^{3}$
It is a cubic polynomial at the degree is 3 .

