Number System

Ex. 1.5

Ex. 1.5
1.(1) $2-\sqrt{5}$
$=2-2.236 \ldots$.
$=0.764 \ldots$.
Since it is a non-terminating non-repeating decimal
$\therefore 2-\sqrt{5}$ it an irrational number.
(11) $(3+\sqrt{23})-\sqrt{23}$
$=3$
Since it is a terminating decimal $\therefore(3+\sqrt{23})-\sqrt{23}$ is a rational number.

$$
\begin{aligned}
& \text { (111) } \begin{array}{l}
\frac{2 \sqrt{7}}{7 \sqrt{7}} \\
=\frac{2}{7} \sqrt{\frac{7}{7} \pm} \\
= \\
\frac{2}{7} \times 1
\end{array} \quad\left[\because \frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}\right]
\end{aligned}
$$

$=\frac{2}{7}$, which is in the form of $\frac{p}{q}$, where p and q are integers and $q \neq 0$
$\therefore \frac{2 \sqrt{7}}{7 \sqrt{7}}$ is a rational number.
(IV) $\frac{1}{\sqrt{2}}$

Rationalising the denominator

$$
\begin{aligned}
& \frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \\
= & \frac{\sqrt{2}}{2} \\
= & \frac{1.4142 \ldots}{2}=0.7071 \ldots .
\end{aligned}
$$

Since it is a non-terminating non-repeating decimal.
$\therefore \frac{1}{\sqrt{2}}$ is an irrational number.

$$
\begin{array}{l|l}
\text { (1) } & 2 \pi \\
= & 2 \times 3.142 \ldots . . \\
= & 6.284 \ldots \ldots
\end{array}
$$

Since it it a non-terminating non-repeating decimal.
$\therefore 2 \pi$ is an irrational number.

2

$$
\begin{aligned}
& \text { (1) }(3+\sqrt{3})(2+\sqrt{2}) \\
& =3(2+\sqrt{2})+\sqrt{3}(2+\sqrt{2}) \\
& =6+3 \sqrt{2}+2 \sqrt{3}+\sqrt{6}
\end{aligned}
$$

$$
\begin{aligned}
\text { (11) } & (3+\sqrt{3})(3-\sqrt{3}) \\
= & (3)^{2}-(\sqrt{3})^{2} \quad\left[\because(a+b)(a-b)=a^{2}-b^{2}\right] \\
= & 9-3 \\
= & 6
\end{aligned}
$$

(III)

$$
\begin{aligned}
& \text { (17) } \\
& =(\sqrt{5}+\sqrt{2})^{2} \\
& =(\sqrt{5})^{2}+(\sqrt{2})^{2}+2(\sqrt{5})(\sqrt{2})\left[\because(a+b)^{2}=a^{2}+b^{2}+2 a b\right] \\
& =5+2+2 \sqrt{10} \\
& =7+2 \sqrt{10}
\end{aligned}
$$

(iv)

$$
\text { (1v) } \begin{aligned}
& (\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2}) \\
= & (\sqrt{5})^{2}-(\sqrt{2})^{2} \quad\left[\because(a-b)(a+b)=a^{2}-b^{2}\right] \\
= & 5-2 \\
= & 3
\end{aligned}
$$

3. $\pi=\frac{c}{d}$

There is no contradiction When we meature any length with a scale or any other device, we only get an approximate rational value. We do not realise that either ' c ' or ' d ' is irrational.
4. $\sqrt{9 \cdot 3}$

Step of construction

1. Draw $A B=9.3$ units.
2. Draw $B C=1$ unit.
3. Draw perpendicular bisector of $A C$ intersecting $A C$ at point 0 .
4. With O as centre and radius $=O A$ or $O C$, draw a semicircle.
5. Draw a perpendicular at point B intersecting the semicircle at point D.
6. Wite B as centre and radius $=B D$, draw an arc intersecting the number line at point E.
7. Mark point B as 0 and C as 1.
8. With radiant $=1$ unit, draw art on the
number line representing 2, 3, 4 etc.
9. Point E represents $\sqrt{9 \cdot 3}$
fuatification -
Construction- foin OD.
$A B=9.3$ units
$B C=1$ unit
$A C=A B+B C$
$=9 \cdot 3+1$
$=10.3$ unit.

$$
O A=O C=O D=\frac{A C}{2} \quad(\text { each }=\text { radius })
$$

or $O A=O C=O D=\frac{10.3}{2}$ units -(1)

$$
\begin{align*}
O B & =O C-B C \\
& =\frac{10.3}{2}-1 \\
& =\frac{10.3-2}{2} \tag{II}
\end{align*}
$$

or $O B=\frac{8.3}{2}$ unit.
Using bythagorax theorem in $\triangle O B D$

$$
O D^{2}=O B^{2}+B D^{2}
$$

or $\left(\frac{10.3}{2}\right)^{2}=\left(\frac{8.3}{2}\right)^{2}+B D^{2}$ (using eq. (1) ard (II))
or $\left(\frac{10 \cdot 3}{2}\right)^{2}-\left(\frac{8 \cdot 3}{2}\right)^{2}=B D^{2}$
or $\left(\frac{10 \cdot 3}{2}+\frac{8 \cdot 3}{2}\right)\left(\frac{10 \cdot 3}{2}-\frac{8 \cdot 3}{2}\right)=B D^{2}\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$
or $\frac{18.6}{2} \times \frac{Z^{2}}{Z_{1}}=B D^{2}$
or $\quad 9.3=B D^{2}$
Taking square root on both sides

$$
B D=\sqrt{9 \cdot 3}
$$

Hence justified.
$50 \left\lvert\, \frac{1}{\sqrt{7}}\right.$
Rationalising the denominator

$$
\frac{1}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}}
$$

$$
=\frac{\sqrt{7}}{7}
$$

(11) $\frac{1}{\sqrt{7}-\sqrt{6}}$

Rationalising the denominator

$$
\begin{aligned}
& =\frac{1}{\sqrt{7}-\sqrt{6}} \times \frac{\sqrt{7}+\sqrt{6}}{\sqrt{7}+\sqrt{6}} \\
& =\frac{\sqrt{7}+\sqrt{6}}{(\sqrt{7})^{2}-(\sqrt{6})^{2}} \\
& =\frac{\sqrt{7}+\sqrt{6}}{7-6} \\
& =\frac{\sqrt{7}+\sqrt{6}}{1} \\
& =\sqrt{7}+\sqrt{6}
\end{aligned}
$$

(ii) $\frac{1}{\sqrt{5}+\sqrt{2}}$

Rationalising the denominator

$$
\begin{aligned}
& \frac{1}{\sqrt{5}+\sqrt{2}} \times \frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}-\sqrt{2}} \\
= & \frac{\sqrt{5}-\sqrt{2}}{(\sqrt{5})^{2}-(\sqrt{2})^{2}} \quad\left[\because(a+b)(a-b)=a^{2}-b^{2}\right] \\
= & \frac{\sqrt{5}-\sqrt{2}}{5-2} \\
= & \frac{\sqrt{5}-\sqrt{2}}{3}
\end{aligned}
$$

(iv) $\frac{1}{\sqrt{7}-2}$

Rationalising the denominator

$$
\begin{aligned}
& \frac{1}{\sqrt{7}-2} \times \frac{\sqrt{7}+2}{\sqrt{7}+2} \\
= & {\left[\begin{array}{l}
\frac{\sqrt{7}+2}{(\sqrt{7})^{2}-(2)^{2}} \quad\left[\because(a-b)(a+b)=a^{2}-b^{2}\right] \\
= \\
= \\
\frac{\sqrt{7}+2}{7-4} \\
\frac{\sqrt{7}+2}{3}
\end{array}\right.}
\end{aligned}
$$

