# Number System Ex. 1.3 



Ese. 1.3

1. (1) $\frac{36}{100}=0.36$, which is a terminating decimal.
(11) $\frac{1}{11}=0 . \overline{09}$, which is a non-terminating and recurring decimal.
(III) $4 \frac{1}{8}=4.125$, which it a terminating decimal.
(iv) $\frac{3}{13}=0 . \overline{230769}$, which is a non-terminativg and recurring decimal.
(v) $\frac{2}{11}=0 . \overline{18}$, which is a non-terminativg and recurring decimal.
(vi) $\frac{329}{400}=0.8225$, which it a terminating decimal
2.) $\frac{1}{7}=0 . \overline{142857}$
yet, we can predict the decimal expansion of $\frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}$ and $\frac{6}{7}$ without actually doing
the long division.

$$
\begin{aligned}
& \frac{2}{7}=2 \times \frac{1}{7}=2 \times 0 . \overline{142857}=0 . \overline{285714} \\
& \frac{3}{7}=3 \times \frac{1}{7}=3 \times 0 . \overline{142857}=0 . \overline{428571} \\
& \frac{4}{7}=4 \times \frac{1}{7}=4 \times 0 . \overline{142857}=0 . \overline{571428} \\
& \frac{5}{7}=5 \times \frac{1}{7}=5 \times 0 . \overline{142857}=0 . \overline{714285} \\
& \frac{6}{7}=6 \times \frac{1}{7}=6 \times 0 . \overline{142857}=0 . \overline{857142}
\end{aligned}
$$

Let $x=0 . \overline{6}$ — (1)
Multiplying both sides by 10

$$
\begin{equation*}
10 x=6 \cdot \overline{6} \tag{11}
\end{equation*}
$$

Subtracting equation (1) from equation (11)

$$
\begin{aligned}
10 x-x & =6 \cdot \overline{6}-0 \cdot \overline{6} \\
9 x & =6 \\
x & =\frac{6^{2}}{9^{3}} \\
x & =\frac{2}{3}
\end{aligned}
$$

$\therefore 0 \cdot \overline{6}=\frac{2}{3}$, which is in the form $\frac{p}{q}$
$O R$
Let $x=0 . \overline{6}$ - (1)
Multiplying bate sides by 10

$$
\begin{aligned}
& 10 x=6 \cdot \overline{6} \\
& 10 x=6+0 . \overline{6} \\
& 10 x=6+x \quad \text { (using equation (1)) } \\
& 10 x-x=6 \\
& 9 x=6 \\
& x=\frac{6}{9}{ }^{2} \\
& x=\frac{2}{3}
\end{aligned}
$$

$\therefore 0 \cdot \overline{6}=\frac{2}{3}$, which is in the form $\frac{p}{q}$
(11) Let $x=0.4 \overline{7}$

Multiplying both sides by 10

$$
\begin{equation*}
10 x=4 \cdot \overline{7} \tag{1}
\end{equation*}
$$

Multiplying both sicker of equation by 10

$$
\begin{equation*}
100 x=47 . \overline{7} \tag{II}
\end{equation*}
$$

Subtracting equation (1) from equation (II)

$$
\begin{gathered}
100 x-10 x=47 \cdot \overline{7}-4 \cdot \overline{7} \\
90 x=43 \\
x=\frac{43}{90}
\end{gathered}
$$

$\therefore 0.4 \overline{7}=\frac{43}{90}$, which is of the form $\frac{p}{q}$
OR
Let $x=0.4 \overline{7}$
Multiplying bate sides by 10

$$
\begin{aligned}
10 x & =4.7 \overline{7} \\
10 x & =4.3+0.4 \overline{7} \\
10 x & =4.3+x \quad(\text { using equation (0) }) \\
10 x-x & =4.3 \\
9 x & =4.3 \\
x & =\frac{43}{90}
\end{aligned}
$$

$\therefore 0.4 \overline{7}=\frac{43}{90}$, which is of the form $\frac{p}{q}$
(111)

Let $x=0 . \overline{001}$
Multiplying bott sides by 1000

$$
\begin{equation*}
1000 x=1 . \overline{001} \tag{11}
\end{equation*}
$$

Subtracting equation (1) from equation (1)

$$
\begin{gathered}
1000 x-x=1.001-0.001 \\
999 x=1 \\
x=\frac{1}{999}
\end{gathered}
$$

$\therefore 0 . \overline{001}=\frac{1}{999}$, which is of the form $\frac{p}{q}$
OR
Let $x=0 . \overline{001}$ - (1)
Multiplying bate sides by 1000

$$
\begin{aligned}
1000 x & =1 . \overline{001} \\
1000 x & =1+0 . \overline{001} \\
1000 x & =1+x \quad \text { (using equation (1)) } \\
1000 x-x & =1 \\
999 x & =1 \\
x & =\frac{1}{999}
\end{aligned}
$$

$\therefore 0 . \overline{001}=\frac{1}{999}$, which is of the form $\frac{p}{q}$
4.

Let $x=0 . \overline{9}$ - (1)
Multiplying both sides by 10 $10 x=9 . \overline{9}$-(II)
Subtracting equation (1) from equation (II)

$$
\begin{gathered}
10 x-x=9 . \overline{9}-0 . \overline{9} \\
9 x=9 \\
x=\frac{9}{9} 1 \\
x=1
\end{gathered}
$$

Yes, at the value of $0 . \overline{9}=1$
Reason:


Ute observe that at the number of digits increate in the terminating decimal, the value of $0 . \overline{9}$ approach et clover to 1 .

$$
\therefore 0 . \overline{9} \approx 1
$$

5. The maximum number of digits in the repeating block of digits in the decimal expansion of $\frac{1}{17}$ it 16 .
(Reason: The maximum number of digits in the repeating block of digits in the decimal expansion of a rational number it one less than divisor ie. q)

$$
\begin{gathered}
\frac{1}{17}=0 . \overline{0588235294117647} \\
1 7 \longdiv { 1 . 0 0 }
\end{gathered}
$$

$$
\begin{array}{r}
\frac{-85}{150} \\
-136 \\
\hline 140
\end{array}
$$

$$
\begin{array}{r}
-136 \\
40 \\
-34 \\
60 \\
-\frac{51}{90}
\end{array}
$$

$$
\frac{-85}{50}
$$

$$
\frac{-34}{160}
$$

$$
\frac{-153}{70}
$$

$$
\frac{-68}{2}
$$

$$
\begin{array}{r}
20 \\
-17 \\
\hline 30 \\
-17 \\
\hline 130 \\
-119 \\
\hline 110 \\
-102 \\
\hline 80 \\
-68 \\
\hline 120 \\
\frac{-119}{1}
\end{array}
$$

6. $\frac{2}{5}=0.4$ Factort of $q$ in each number are

$$
\begin{array}{ll}
\frac{12}{25}=0.48 & 25=5^{2} \\
\frac{3}{125}=0.024 & 125=5^{3} \\
\frac{7}{10}=0.7 & 10=2 \times 5 \\
\frac{19}{100}=0.19 & 100=2^{2} \times 5^{2} \\
\frac{37}{1000}=0.037 & 1000=2^{3} \times 5^{3} \\
\frac{3}{2}=1.5 & 2 \\
\frac{3}{4}=0.75 & 4=2^{2} \\
\frac{13}{8}=1.625 & 8=2^{3}
\end{array}
$$

The factors of $q$ are 2 or 5 or both 2 and 5 .
7. Three numbers whore decimal expansions are now- terminating non-reccerring are

$$
\begin{aligned}
& 0.57557555755557 \\
& 23.14114111411114 \ldots \\
& 7.29229222922229
\end{aligned}
$$

8. 

$$
\begin{aligned}
& \frac{5}{7}=0 . \overline{714285} \\
& \frac{9}{11}=0.8181
\end{aligned}
$$

Three irrational numbers are

$$
\begin{aligned}
& 0.7215115111511115 \ldots \\
& 0.7632332333233332 \ldots \\
& 0.7948448444844448
\end{aligned}
$$

9 (1) $\sqrt{23}=4.79583152331272 \ldots$
Since the decimal is non-terminating non - repeating
$\therefore \sqrt{23}$ is an irrational number.
(11) $\sqrt{225}=\sqrt{3 \times 3 \times 5 \times 5}=3 \times 5=15$, which is rational
$\therefore \sqrt{225}$ is a rational number.
(III) 0.3796

Since the decimal is terminating. $\therefore 0.3796$ is a rational number.
(iv) 7.478478 .

Since the decimal is non-terminating repeating. $\therefore 7.478478 \ldots$ is a rational member.
(v) $1.101001000100001 \ldots$

Since the decimal is non-terminating non-refeating.
$\therefore 1.101001000100001$. - is an irrational number.

