# Number System Ex. 1.2 

$E x \cdot 1.2$
1 (1) True, every irrational number it a real number as the collection of real number is made up of rational and irrational numbers.
(11) False, every point on the number line is not of the form $\sqrt{m}$, where ' $m$ ' is a natroral number ax no negative number can be the square root of any natrival number.
(11) False, very real number is not an irrational number e.g. 5 is a real number but not an irrational number.
2. No, the square root of all positive integers are not irrational. e.g. $\sqrt{9}=3$, which is a rational number.
3.

$A B=1$ unit, $B C=2$ units
step of construction:
1.) Draw a line $l$.
2) Mark point $--,-2,-1,0,1,2,-\ldots$ on the number line at equal distance.
3) Draw a perpendicular at point B.
4.) With point $B$ as centre and radius $=2$ units, draw an arc intersecting $B X$ at point.
5) Join $C$ and $A$.
6.) With point $A$ as the centre and radius, = AC, draw an arc intersecting line ' $l$ ' vat point $D$.
7.) Point $D$ represents $\sqrt{5}$

Gustification:
$A B=1$ unit
$B C=2$ units
Using Pythagoras theorem in $\triangle A B C$

$$
\begin{aligned}
& A C^{2}=A B^{2}+B C^{2} \\
& A C^{2}=1^{2}+2^{2} \\
& A C^{2}=1+4 \\
& A C^{2}=5 \\
& A C=\sqrt{5}
\end{aligned}
$$

5.) Classroom activity for droving a square root spiral.

