Real Numbers
 Ex. 1.4

MATH
$\varepsilon_{x} 1.4$
1 (1)

$$
\begin{array}{l|l}
1 \text { (1) } & \frac{13}{3125} \\
3125=5^{5} \\
\text { or } & 3125=2^{\circ} \times 5^{5}
\end{array}
$$

Since factors of q ie. 3125 are of the form $2^{n} \times 5^{n}$
$\therefore \frac{13}{3125}$ will have a terminating decimal.
(II)

$$
\begin{aligned}
& \frac{17}{8} \\
& 8=2^{3}
\end{aligned}
$$

or $8=2^{3} \times 5^{0}$
Since foctort of aq ice. 8 are of the form $2^{n} \times 5^{m}$
$\therefore \frac{17}{8}$ will have a terminating decimal.
(iii) $\frac{64}{455}$

$$
455=5 \times 7 \times 13
$$

Since the factor of q ice. 455 are not of the form $2^{n} \times 5^{m}$
$\therefore \frac{64}{455}$ will have a non-terminating repeating decimal.
(iv)

$$
\begin{aligned}
& \frac{15}{1600}=\frac{3}{320} \\
& 320=2^{6} \times 5
\end{aligned}
$$

Since the factor of q i.e. 320 are of
the form $2^{n} \times 5^{m}$.
$\therefore \frac{15}{1600}$ will have a terminating decimal.
(v)

$$
\begin{aligned}
& \frac{29}{343} \\
& 343=7^{3}
\end{aligned}
$$

Since the factors of q are not of the form $2^{n} \times 5^{m}$
$\therefore \frac{29}{343}$ will have a non-terminating repeating decimal.
(vi) $\frac{23}{2^{3} 5^{2}}$

Since the factors of q are of the form $2^{n} \times 5^{m}$.
$\therefore \frac{23}{2^{3} 5^{2}}$ will have a terminating decimal.
(vii) $\frac{129}{2^{2} 5^{7} 7^{5}}$

Since the factors of q are not of the form $2^{n} \times 5^{m}$
$\therefore \frac{129}{2^{2} 5^{7} 7^{5}}$ will hove a now -terminating repeating decimal.
(viii) $\frac{\frac{6}{}^{2}}{155}=\frac{2}{5 \times 20}$

Since the factors of q are of the form $2^{n} \times 5^{m}$.
$\therefore \frac{6}{15}$ will have a terminating decimal.
(x) $\frac{357}{5010}=\frac{7}{10}=\frac{7}{2 \times 5}$

Since the factors of of are of the form $2^{n} \times 5^{m}$
$\therefore \frac{35}{50}$ will have a terminating decimal.
(x) $\frac{7711}{21030}=\frac{11}{30}=\frac{11}{2 \times 3 \times 5}$

Since the factors of q are not of the form $2^{n} \times 5^{m}$.
$\therefore \frac{77}{210}$ will have a non-terminating repeating decimal.

$$
20 \frac{13}{3125}=\frac{13}{5^{5}} \times \frac{2^{5}}{2^{5}}=\frac{416}{10^{5}}=0.00416
$$

(11) $\frac{17}{8}=\frac{17}{2^{3}} \times \frac{5^{3}}{5^{3}}=\frac{17 \times 125}{10^{3}}=\frac{2125}{10^{3}}=2.125$
(14) $\frac{15^{3}}{1600320}=\frac{3}{320}=\frac{3}{2^{6} \times 5} \times \frac{5^{5}}{5^{5}}=\frac{3 \times 3125}{10^{6}}=\frac{9375}{10^{6}}=0.009375$
(vi) $\frac{23}{2^{3} 5^{2}} \times \frac{5}{5}=\frac{115}{10^{3}}=0.115$
(111) $\frac{6^{2}}{155}=\frac{2}{5} \times \frac{2}{2}=\frac{4}{10}=0.4$
(ix) $\frac{35^{7}}{5010}=\frac{7}{10}=0.7$

3(1) 43.123456789 is a rational number as it it a terminating decimal.
The prime factors of q are of the form $2^{n} \times 5^{m}$
(11) $0.120120012000120000 \ldots$ is an irrational number as it is a now-terminating non-sepeating decimal.
(II) $43 . \overline{123456789}$ is a rational number as it is a non-terminating repeating decimal. The prime factor of us are not of the form $2^{n} \times 5^{m}$.

