Real Numbers
 Ex. 1.3

MATH

Ex. 1.3

1. Let us suppose that $\sqrt{5}$ is a rational number $\therefore \sqrt{5}=\frac{a}{b}$, where ' a ' and ' b ' are integers and $b \neq 0$.
Dividing ' a ' and ' b ' by their HCF $\sqrt{5}=\frac{p}{q}$, where ' p ' and ' q ' are integers, $q \neq 0$ and p, q are co-prime.
or $p=\sqrt{5} q$
squaring both sides

$$
\begin{equation*}
p^{2}=5 q^{2} \tag{1}
\end{equation*}
$$

$\therefore p^{2}$ is divisible by 5
or P is abs divisible by 5 - (11)
$\therefore P=5 \mathrm{~m}$, where ' m ' is an integer
Squaring both sides

$$
p^{2}=25 m^{2}
$$

or $5 q^{2}=25 m^{2}$ (using equation (1))
or $q^{2}=\frac{2^{5} 5 m^{2}}{81}$
or $\quad q^{2}=5 m^{2}$
$\therefore q^{2}$ is divisible by 5 .
or q is also divisible by 5 .
From (1) and (II)
p and q have 5 as a common factor.
But this contradict the fact that p and q are co-prime.
\therefore Our supposition that $\sqrt{5}$ is rational is wrong. $\sqrt{5}$ is not a rational number.
$\therefore \sqrt{5}$ is an irrational number.
2. Let ut suppose that $3+2 \sqrt{5}$ it a rational number. $\therefore 3+2 \sqrt{5}=\frac{a}{b}$, where ' a ' and ' b ' are integers and $b \neq 0$.
Dividing a and b by their HCF $3+2 \sqrt{5}=\frac{p}{q}$, where ' p ' and ' q ' are integers, $q \neq 0$, p and q are co-prime.
or $2 \sqrt{5}=\frac{p}{q}-3$
or $2 \sqrt{5}=\frac{p-3 q}{q}$
or $\sqrt{5}=\frac{p-3 q}{2 q}$
$2,3, p$ and q are integers
$\therefore \frac{p-3 q}{2 q}$ it a rational number.
so $\sqrt{5}$ is also a rational number.
But this contradict the fact that $\sqrt{5}$ is an irrational number.
Our supposition that $\sqrt{5}$ it rational is wrong
$\therefore \sqrt{5}$ it not a rational number.
$\therefore \sqrt{5}$ it an irrational number.
30 Let us suppose that $\frac{1}{\sqrt{2}}$ it a rational number.
$\therefore \frac{1}{\sqrt{2}}=\frac{a}{b}$, where ' a ' and ' b ' are integer e and $b \neq 0$
Dividing a and be by their H.C.F. $\frac{1}{\sqrt{2}}=\frac{p}{q}$, where ' p ' and ' q ' are integers, $q \neq 0$, p and q are co-prime.
or $\sqrt{2}=\frac{q}{p}$
p and q are integer
$\therefore \frac{q}{p}$ it a rational number
So $\sqrt{2}$ is aluo a rational number.
But this contradicts the fact that $\sqrt{2}$ is an irrational number.
\therefore Our supposition is wrong.
$\frac{1}{\sqrt{2}}$ is not a rational number.
$\therefore \frac{1}{\sqrt{2}}$ is an irrational number
(11) Let ut suppose that $7 \sqrt{5}$ is a rational number
$\therefore 7 \sqrt{5}=\frac{a}{b}$, where ' a ' and ' b ' are integer d and $b \neq 0$
Dividing a and b by their H.C.F.
$7 \sqrt{5}=\frac{p}{q}$, where ' p ' and ' q ' are integers, $q \neq 0$, p and q are co-prime.
or $\sqrt{5}=\frac{p}{7 q}$
$p, q, 7$ are integer t
$\therefore \frac{p}{7 q}$ is a rational number
So, $\sqrt{5}$ is also a rational number.
But this contradict the fact that $\sqrt{5}$ is san irrational number.
\therefore Our supposition is wrong.
$17 \sqrt{5}$ is not a rational number.
$\therefore 7 \sqrt{5}$ it an irrational number.
(11) Let us suppose that $6+\sqrt{2}$ is a rational number.
$\therefore 6+\sqrt{2}=\frac{a}{b}$, where ' a ' and ' b ' are integers, $b \neq 0$
Dividing a and b by their H.C.F. $6+\sqrt{2}=\frac{p}{q}$, where ' p ' and ' q ' are integers, $q \neq 0, p$ and q are co -prime.
or $\sqrt{2}=\frac{p}{q}-6$
or $\sqrt{2}=\frac{p-6 q}{q}$
$p, q, 6$ are integers
$\therefore \frac{p-6 q}{q}$ is a rational number.
so, $\sqrt{2}$ is also a rational number.
But this contradicts the fact that $\sqrt{2}$ is an irrational number.
\therefore Our supposition is wrong.
$\therefore 6+\sqrt{2}$ is not a rational number.
$\therefore 6+\sqrt{2}$ is an irrational number.

