Real Numbers
Ex. 1.2

Ex. 1.2
10) $140=2^{2} \times 5 \times 7$
(11) $156=2^{2} \times 3 \times 13$
(iii) $3825=3^{2} \times 5^{2} \times 17$
(11) $5005=5 \times 7 \times 11 \times 13$
(v)

$$
\text { () } \begin{aligned}
7429 & =17 \times 19 \times 23 \\
26 & =2 \times 13 \\
91 & =7 \times 13 \\
H C F & =13 \\
L C M & =2 \times 7 \times 13 \\
& =182
\end{aligned}
$$

$$
L C M \times H C F=13 \times 182=2366
$$

Product of numbert $=26 \times 91=2366$
$\therefore L C M \times H C F=$ broduct of numbers
(II)

$$
\begin{aligned}
& 510=2 \times 3 \times 5 \times 17 \\
& 92=2^{2} \times 23 \\
& H C F=2 \\
& L C M=2^{2} \times 3 \times 5 \times 17 \times 23=23460 \\
& L C M \times H C F=23460 \times 2=46920
\end{aligned}
$$

Product of numbert $=510 \times 92=46920$
$\therefore L C M \times H C F=$ Product of numbers
(ii)

$$
\begin{aligned}
& 336=2^{4} \times 3 \times 7 \\
& 54=2 \times 3^{3} \\
& H C F=2 \times 3=6 \\
& \text { LCM }=2^{4} \times 3^{3} \times 7=3024 \\
& \text { LCM } \times \text { HCF }=3024 \times 6=18144
\end{aligned}
$$

Prodrect of numbert $=336 \times 54=18144$
$\therefore L C M \times H C F=$ Product of numbers

3(1)

$$
\begin{aligned}
& 12=2^{2} \times 3 \\
& 15=3 \times 5 \\
& 21=3 \times 7 \\
& H C F=3 \\
& \text { LCM }=2^{2} \times 3 \times 5 \times 7=420
\end{aligned}
$$

(11)

$$
\begin{aligned}
& 17=17 \times 1 \\
& 23=23 \times 1 \\
& 29=29 \times 1 \\
& H C F=1 \\
& \text { LCM }=17 \times 23 \times 29=11339
\end{aligned}
$$

(iii)

$$
\begin{aligned}
8 & =2^{3} \times 1 \\
9 & =3^{2} \times 1 \\
25 & =5^{2} \times 1 \\
H C F & =1 \\
\text { LCM } & =2^{3} \times 3^{2} \times 5^{2} \\
& =1800
\end{aligned}
$$

4.

$$
\operatorname{HCF}(306,657)=9
$$

LCM $=$ Product of numbers

$$
\begin{aligned}
& 34 C F \\
= & \frac{346 \times 657}{91} \\
= & 22338
\end{aligned}
$$

5. If the number 6^{n}, for any ' n ', were to end with the digit zero, then it would be divisible by 5. That is, the prime factorisation of 4^{n} would contain the prime 5. This it not possible because $6^{n}=(2 \times 3)^{n}=2^{n} \times 3^{n}$. so, the uniqueness of Fundamental Theorem of Arithmetic guarantees that there are no other primes in the factorisation of 6^{n}. so, there is no natural number ' n ' for which 6 " end with the digit zero.

$$
\begin{aligned}
& 6.7 \times 11 \times 13+13 \\
& =13(7 \times 11+1) \\
& =13 \times 78 \\
& =13 \times 13 \times 3 \times 2
\end{aligned}
$$

since there are more than two factors, therefore $7 \times 11 \times 13+13$ is a composite number.

$$
\begin{aligned}
& =7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1+5 \\
& =5(7 \times 6 \times 4 \times 3 \times 2+1) \\
& =5(1008+1) \\
& =5 \times 1009 \times 1
\end{aligned}
$$

Since there are more thaw two factors, therefore $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1+5$ it a composite number
7. Dime token by sonia for one round $=18$ minuter Time taken by Ravi for one round $=12$ minutes The time when they meat again at the starting point is the LCM of 18 and 12 .

$$
\begin{aligned}
18 & =2 \times 3^{2} \\
12 & =2^{2} \times 3 \\
L C M & =2^{2} \times 3^{2} \\
& =36
\end{aligned}
$$

\therefore Sonia and Ravi meet again at the starting point after 36 minutes.

