Polynomials

Ex. 2.2

Ex.2.2
$1(1$

$$
\begin{aligned}
1(1) & x^{2}-2 x-8 \\
= & x^{2}-4 x+2 x-8 \\
= & x(x-4)+2(x-4) \\
= & (x-4)(x+2)
\end{aligned}
$$

zeroes are 4 and (-2)
Verification
Let $\alpha=4, \beta=-2$

$$
\begin{aligned}
& \alpha+\beta=4+(-2)=2=\frac{-(-2)}{1}=-\frac{b}{a} \\
& \alpha \beta=4(-2)=-8=\frac{-8}{1}=\frac{c}{a}
\end{aligned}
$$

thence verified

$$
\text { (11) } \begin{aligned}
& 4 s^{2}-4 s+1 \\
&= 4 s^{2}-2 s-2 s+1 \\
&= 2 s(2 s-1)-1(2 s-1) \\
&=(2 s-1)(2 s-1) \\
& \therefore \text { Zeroes are } \frac{1}{2}, \frac{1}{2}
\end{aligned}
$$

Verification

$$
\begin{aligned}
& \text { Let } \alpha=\frac{1}{2}, \beta=\frac{1}{2} \\
& \alpha+\beta=\frac{1}{2}+\frac{1}{2}=1=1 \times \frac{4}{4}=\frac{-(-4)}{4}=-\frac{b}{a} \\
& \alpha \beta=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=\frac{1}{4}=\frac{c}{a}
\end{aligned}
$$

OR $4 \Delta^{2}-4 s+1$

$$
\begin{aligned}
& =(2-1)^{2}-2 \times 21 \times 1+(1)^{2} \\
& =(2-1)^{2}\left[a^{2}-2 a b+b^{2}=(a-b)^{2}\right] \\
& =(2-1)(2+-1)
\end{aligned}
$$

Hence verified
(iii)

$$
\text { (11) } \begin{aligned}
& 6 x^{2}-3-7 x \\
& =6 x^{2}-7 x-3
\end{aligned}
$$

$$
\begin{aligned}
& =6 x^{2}-9 x+2 x-3 \\
& =3 x(2 x-3)+1(2 x-3) \\
& =(2 x-3)(3 x+1) \\
& \therefore \text { zeroes are } \frac{3}{2},-\frac{1}{3}
\end{aligned}
$$

Verification
Let $\alpha=\frac{3}{2}, \beta=-\frac{1}{3}$

$$
\begin{aligned}
& \alpha+\beta=\frac{3}{2}+\left(\frac{-1}{3}\right)=\frac{9-2}{6}=\frac{7}{6}=\frac{-(-7)}{6}=-\frac{b}{a} \\
& \alpha \beta=\left(\frac{3}{2}\right)\left(-\frac{1}{3}\right)=\frac{-3}{6}=\frac{c}{a}
\end{aligned}
$$

Hence verified.
(iv)

$$
\begin{aligned}
& 4 u^{2}+8 u \\
&= 4 u(u+2) \\
& \therefore \text { zeroes are } 0,-2
\end{aligned}
$$

Verification
Let $\alpha=0, \beta=-2$

$$
\begin{aligned}
& \alpha+\beta=0+(-2)=-2=-2 \times \frac{4}{4}=-\frac{8}{4}=-\frac{b}{a} \\
& \alpha \beta=0(-2)=0=\frac{0}{4}=\frac{c}{a}
\end{aligned}
$$

Hence verified.

$$
\begin{aligned}
& \text { (v) } \begin{array}{l}
t^{2}-15 \\
= \\
= \\
=t^{2}-(\sqrt{15})^{2} \\
(t+\sqrt{15})(t-\sqrt{15}) \quad\left[a^{2}-b^{2}=(a+b)(a-b)\right] \\
\therefore \text { Zeroes are } \sqrt{15},-\sqrt{15} \\
\\
\text { Verification }
\end{array}
\end{aligned}
$$

Let $\alpha=\sqrt{15}, \beta=-\sqrt{15}$

$$
\begin{aligned}
& \alpha+\beta=\sqrt{15}+(-\sqrt{15})=0=\frac{0}{1}=-\frac{b}{a} \\
& \alpha \beta=(\sqrt{15})(-\sqrt{15})=-15=\frac{-15}{1}=\frac{c}{a}
\end{aligned}
$$

Hence verified.
(vi)

$$
\text { (11) } \begin{aligned}
& 3 x^{2}-x-4 \\
&= 3 x^{2}+3 x-4 x-4 \\
&= 3 x(x+1)-4(x+1) \\
&=(x+1)(3 x-4) \\
& \text { zeroes are }-1, \frac{4}{3}
\end{aligned}
$$

Verification
Let $\alpha=-1, \beta=\frac{4}{3}$

$$
\begin{aligned}
& \alpha+\beta=-1+\frac{4}{3}=\frac{-3+4}{3}=\frac{1}{3}=\frac{-(-1)}{3}=-\frac{b}{a} \\
& \alpha \beta=(-1)\left(\frac{4}{3}\right)=-\frac{4}{3}=\frac{c}{a}
\end{aligned}
$$

Hence verified
$2(1)$ Let the zeroed be α and β.

$$
\begin{aligned}
& \alpha+\beta=\frac{1}{4}=-\frac{b}{a} \\
& \alpha \beta=-1=-1 \times \frac{4}{4}=-\frac{4}{4}=\frac{c}{a}
\end{aligned}
$$

Comparing $a=4, b=-1, c=-4$
\therefore Required polynomial is $k\left(a x^{2}+b x+c\right)$, where
k is a real number
or $k\left(4 x^{2}-x-4\right)$
(11) Let the zeroes be α and β.

$$
\begin{aligned}
& \alpha+\beta=\sqrt{2}=\sqrt{2} \times \frac{3}{3}=\frac{3 \sqrt{2}}{3}=-\frac{b}{a} \\
& \alpha \beta=\frac{1}{3}=\frac{c}{a}
\end{aligned}
$$

Comparing $a=3, b=-3 \sqrt{2}, c=1$
\therefore Required polynomial is $k\left(a x^{2}+b x+c\right)$, where k is a real number.
or $k\left(3 x^{2}-3 \sqrt{2} x+1\right)$
(iii) Let the zeroes be α and β.

$$
\begin{aligned}
& \alpha+\beta=0=\frac{0}{1}=-\frac{b}{a} \\
& \alpha \beta=\sqrt{5}=\frac{\sqrt{5}}{1}=\frac{c}{a}
\end{aligned}
$$

Comparing $a=1, b=0, c=\sqrt{5}$
\therefore Required polynomial is $k\left(a x^{2}+b x+c\right)$, where k is a real number.
or $k\left(x^{2}+0 x+\sqrt{5}\right)$
or $k\left(x^{2}+\sqrt{5}\right)$
(iv) Let the zeroes be α and β.

$$
\begin{aligned}
& \alpha+\beta=1=\frac{1}{1}=\frac{-(-1)}{1}=-\frac{b}{a} \\
& \alpha \beta=1=\frac{1}{1}=\frac{c}{a}
\end{aligned}
$$

Comparing $a=1, b=-1, c=1$
\therefore Required polynomial is $k\left(a x^{2}+b x+c\right)$, where k is a real number
or $k\left(x^{2}-x+1\right)$
(v) Let the zeroes be α and β.

$$
\begin{aligned}
& \alpha+\beta=-\frac{1}{4}=-\frac{b}{a} \\
& \alpha \beta=\frac{1}{4}=\frac{c}{a}
\end{aligned}
$$

Comparing $a=4, b=1, c=1$
\therefore Required polynomial is $k\left(a x^{2}+b x+c\right)$, where k is a real number.
or $k\left(4 x^{2}+x+1\right)$
(vi) Let the zeroes be α and β.

$$
\begin{aligned}
& \alpha+\beta=4=\frac{4}{1}=\frac{-(-4)}{1}=-\frac{b}{a} \\
& \alpha \beta=1=\frac{1}{1}=\frac{c}{a}
\end{aligned}
$$

Comparing $a=1, b=-4, c=1$
\therefore Required polynomial is $k\left(a x^{2}+b x+c\right)$, where k is a real number.
or

$$
k\left(x^{2}-4 x+1\right)
$$

