Surface Areas And Volumes

Ex. 13.1 1. Let edge of each rube = a cm Volume of cube = 64 cm^3 $a^{3} = 64$ Q_= ₹/64 a= 4 cm For the resulting cuboid length, l = 4+4 = 8 cm breadth, b= 4 cm height, h= 4 cm burface area of resulting ruboid=2(lb+b+th) $=2(8\times 4+4\times 4+4\times 8)$ = 2 (32 + 16 + 32) $=2\times80$ = 160 cm2 2. Diameter of hemisphere = 14 cm Rodius of hemisphere, $r = \frac{d}{2} = \frac{14}{2} = 7$ cm Radius of base of cylinder, r=7 cm Istal height of vessel = 13 cm Height of cylinder, h = 13-7 = 6 cm Inner surface area of toy = curved surface area of cylinder + curved surface area of hemisphere = $2\pi n h + 2\pi n^2$ = 2π r (L+ r) $= 2 \times \frac{22}{7} \times \frac{1}{7} (6+7)$

 $2 \times 22 \times 13$ $= 572 \text{ cm}^2$ 3. Radius of base of cone and hemisphere, r = 3.5 cm Jotal height of tay = 15.5 cm Height of cone, h= 15.5-3.5=12.cm Alont height of rone, l= 1/2 + 1/2 $b = 12^2 + (3 \cdot 5)^2$ or $l = \sqrt{144 + 12.25}$ er l= 156.25 or l = 12.5 cm Istal surface area of toy rowed surface area of = | area of hemisphere π ν l + 2 π ν² = | П ч (l+2 ч) = | $= \frac{22}{7} \times \frac{3.5}{5} (12.5 + 2 \times 3.5)$ 11×19.5 = | = 214.5 ~m² 4. ledge of cube, a=7 cm Diameter of lease of hemisphere = edge of cube=7 cm : greatest deameter the hemisphere con have = 7 cm Radius of base of hemisphere, $r = \frac{d}{2} = \frac{7}{2}$ cm

Aufore area of solid = surface area of cube + curved surface area of hemisphere - area of base of hemisphere $= 6 \alpha^{2} + 2\pi \alpha^{2} - \pi \alpha^{2}$ 6 a² + π x² 11 $6 \times 7^2 + 22 \times 7$ = 294+ 77 294+38.5 Ξ 332.5 cm2 3 5. Diameter of base of hemisphe = edge of cube = l units Radius of base of femilitere, & = <u>l</u> unita Q principare of the servaining solid = surface area of cube + runved surface area of hemisphere area of base of hemisphere $= 6 L^{2} + 2\pi x^{2} - \pi x^{2}$ 6 l2+ π 22 $6 L^2 + \pi \left(\frac{L}{2} \right)^2$ $6l^2 + Tl^2$ $\frac{24l^2 + \pi l^2}{4}$ $= \frac{1}{4} l^2 (24 + \pi)$ square units Ξ

6. Diometer of capsule, d=5mm 14 mm Length of entire copule = 14mm Length of cylinder, h = 14-(r+r) 二 14-2 上 =14-2×5 -14-5 =9 mm burface area of capale = coursed surface area of cylinder + 2x crowed surface area of hemisphere = $2\pi h + 2 \times 2\pi h^2$ $= 2\pi r h + 4\pi a^2$ $= 2\pi x (h + 2x)$ $\left(\begin{array}{c} 9+2\times 5\\ 2\end{array}\right)$ $= \frac{2}{2} \times \frac{22}{7} \times \frac{5}{7}$ $= \frac{110}{2} \times \frac{10}{2}$ $= 220 \text{ mm}^2$ 7. Height of cylinder, h= 2.1m 2.1m Diameter of base, d=4m Radius of base of cylinder and cone, $r = \frac{d}{2} = \frac{4}{2} = 2m$ Slont height of cone, l = 2.8m

Area of canvas used for making the tent = cruved surface area of cone + crured surface area of cylinder = π ~ l + 2 π ~ l = π x (l+2h) $= \frac{22}{2} \times 2 (2 \cdot 8 + 2 \times 2 \cdot 1)$ $= \left| \begin{array}{c} \frac{44}{\chi_1} \times \chi^{-1} \\ \end{array} \right|$ = 44 m² Nost of 1 m² of convox = 7500 Nost of 44 m² of convax = 44 × 500 = 22000 8. Height of cylinder, h = 2.4 cm Diameter of base of cylinder, d = 1.4 cm Radius of base of cylinder and cone, r $= \frac{d}{2} = \frac{1.4}{2} = 0.7$ cm Short feight of core, $l = \sqrt{L^2 + r^2}$ = $\sqrt{(2 \cdot 4)^2 + (0 \cdot 7)^2}$ = $\sqrt{5 \cdot 76 + 0 \cdot 4}$ $=\sqrt{(2\cdot 4)^2 + (0\cdot 7)^2}$ $= \sqrt{5.76+0.49}$ $= \sqrt{6.25}$ Lotal surface area of semaining solid = total surface area of cylinder + rurved surface of cone-orea of base of cylinder $= |2\pi n h + 2\pi n^2 + \pi n h - \pi n^2$ = 2π x L + π x² + π x L

 $= \pi r(2 + r + l)$ $= \left| \frac{22}{x_{1}} \times 0^{1} + (2 \times 2^{1} + 0^{1} + 2^{1} + 5) \right|$ 2.2 × 8 Ξ = 17.6 $\approx 18 \text{ cm}^2$ 9. Height of cylinder, h = 10 cm Radius of lease of cylinder and 10cm hemisphere, r = 3.5 cm Istal surface area of toy = curved surface area of cylinde + 2x crowed surface area of hemisphere = 2πrl + 2x 2πrl = 2msh+4m22 2π r (L+2r) $2 \times \frac{22}{3} \times \frac{3.5}{3.5} (10 + 2 \times 3.5)$ Ξ 22 × 17 Ξ 374 cm2 Ξ