Surface Areas And Volumes

Ex. 13.1

1. Let edge of each cube $=a \mathrm{~cm}$
Volume of cube $=64 \mathrm{~cm}^{3}$

$$
\begin{aligned}
& a^{3}=64 \\
& a=\sqrt[3]{64} \\
& a=4 \mathrm{~cm}
\end{aligned}
$$

For the resulting cuboid
length, $l=4+4=8 \mathrm{~cm}$
breadth, $b=4 \mathrm{~cm}$
height, $h=4 \mathrm{~cm}$
surface area of resulting cuboid $=2(l b+b h+h l)$

$$
\begin{aligned}
& =2(8 \times 4+4 \times 4+4 \times 8) \\
& =2(32+16+32) \\
& =2 \times 80 \\
& =160 \mathrm{~cm}^{2}
\end{aligned}
$$

2. Diameter of hemisphere $=14 \mathrm{~cm}$

Radius of hemisphere, $r=\frac{d}{2}=\frac{14}{2}=7 \mathrm{~cm}$
Radius of base of cylinder, $r=7 \mathrm{~cm}$

Total height of vessel $=13 \mathrm{~cm}$
Height of cylinder, $h=13-7=6 \mathrm{~cm}$
Inner surface area of toy $=$ curved surface area of cylinder t curved surface area of hemiphere

$$
\begin{aligned}
& =2 \pi r h+2 \pi r^{2} \\
& =2 \pi r(h+r) \\
& =2 \times \frac{22}{7_{1}} \times \frac{1}{7}(6+7)
\end{aligned}
$$

$$
\begin{aligned}
& =2 \times 22 \times 13 \\
& =572 \mathrm{~cm}^{2}
\end{aligned}
$$

3. Radius of base of cone and
hemisphere, $r=3.5 \mathrm{~cm}$
Total height of toy $=15.5 \mathrm{~cm}$
3teight of cone, $h=15.5-3.5=12 \mathrm{~cm}$
slant height of cone, $l=\sqrt{h^{2}+r^{2}}$

or $l=\sqrt{12^{2}+(3.5)^{2}}$
or $l=\sqrt{144+12.25}$
or $l=\sqrt{156.25}$
or $l=12.5 \mathrm{~cm}$
Total surface area of toy
= curved surface area of cone curved surface area of hemisphere

$$
\begin{aligned}
& =\pi r l+2 \pi r^{2} \\
& =\pi r(l+2 r) \\
& =\frac{22}{7} \times 3.5(12.5+2 \times 3.5) \\
& =11 \times 19.5 \\
& =214.5 \mathrm{~cm}^{2}
\end{aligned}
$$

4. Edge of cube, $a=7 \mathrm{~cm}$

Diameter of base of hemisphere =edge of cube $=7 \mathrm{~cm}$
\therefore Greatest diameter the hemisphere can have $=7 \mathrm{~cm}$ Radius of base of hemisphere,

$$
r=\frac{d}{2}=\frac{7}{2} \mathrm{~cm}
$$

surface area of solid
= surface area of cube + curved surface area of hemisphere - area of base of hemisphere

$$
\begin{aligned}
& =6 a^{2}+2 \pi r^{2}-\pi r^{2} \\
& =6 a^{2}+\pi r^{2} \\
& =6 \times 7^{2}+\frac{2 z^{11}}{\not{ }_{1}} \times \frac{z^{1}}{2} \times \frac{7}{2} \\
& =294+\frac{77}{2} \\
& =294+38.5 \\
& =332.5 \mathrm{~cm}^{2}
\end{aligned}
$$

5. Diameter of base of hemisphere $=e d g e$ of cube $=l$ unit. Radius of base of temiphere, er

$$
=\frac{l}{2} \text { units }
$$

surface area of the remaining solid $=$ surface area of cube + curved surface area of
 hemisphere - area of base of hemisphere

$$
\begin{aligned}
& =6 l^{2}+2 \pi r^{2}-\pi r^{2} \\
& =6 l^{2}+\pi r^{2} \\
& =6 l^{2}+\pi\left(\frac{l}{2}\right)^{2} \\
& =6 l^{2}+\frac{\pi l^{2}}{4} \\
& =\frac{24 l^{2}+\pi l^{2}}{4}=\frac{1}{4} l^{2}(24+\pi) \text { square unit. }
\end{aligned}
$$

6. Diameter of capsule, $d=5 \mathrm{~mm}$ Radius of base of cylinder and hemisphere, $r=\frac{d}{2}=\frac{5}{2} \mathrm{~mm}$

Length of entire copoule $=14 \mathrm{~mm}$
Length of cylinder, $h=14-(r+r)$

$$
\begin{aligned}
& =14-2 r \\
& =14-x \times \frac{5}{z t} \\
& =14-5 \\
& =9 \mathrm{~mm}
\end{aligned}
$$

surface area of capoule
$=$ curved surface area of veclinder $+2 \times$ cured surface area of hemisphere

$$
\begin{aligned}
& =2 \pi r h+2 \times 2 \pi r^{2} \\
& =2 \pi r h+4 \pi r^{2} \\
& =2 \pi r(h+2 r) \\
& =\frac{1}{2 \times} \times \frac{22}{7} \times \frac{5}{2_{1}}\left(9+2 \times \frac{5}{2}\right) \\
& =\frac{110}{4} \times \frac{14^{2}}{1} \\
& =220 \mathrm{~mm}^{2}
\end{aligned}
$$

7. Weight of cylinder, $h=2.1 \mathrm{~m}$

Diameter of base, $d=4 \mathrm{~m}$
Radius of base of cylinder and cone,

$$
r=\frac{d}{2}=\frac{4}{2}=2 \mathrm{~m}
$$

Slant height of cone, $l=2.8 \mathrm{~m}$

Area of canvas used for making the tent $=$ curved surface area of cone + curved surface area of cylinder

$$
\begin{aligned}
& =\pi r l+2 \pi r h \\
& =\pi r(l+2 h) \\
& =\frac{22}{7} \times 2(2 \cdot 8+2 \times 2 \cdot 1) \\
& =\frac{44}{x_{1}} \times 7^{1}
\end{aligned}
$$

$$
=44 \mathrm{~m}^{2}
$$

Cost of $1 \mathrm{~m}^{2}$ of canvas $= \pm 500$
Cost of $44 \mathrm{~m}^{2}$ of rconvax $=44 \times 500$

$$
=₹ 22000
$$

8. Height of cylinder, $h=2.4 \mathrm{~cm}$

Diameter of base of cylinder, $d=1.4 \mathrm{~cm}$ Radius of base of cylinder and cone, r

$$
=\frac{d}{2}=\frac{1.4}{2}=0.7 \mathrm{~cm}
$$

Slant height of cone, $l=\sqrt{h^{2}+r^{2}}$

$$
\begin{aligned}
& =\sqrt{(2.4)^{2}+(0.7)^{2}} \\
& =\sqrt{5.76+0.49} \\
& =\sqrt{6.25} \\
& =2.5 \mathrm{~cm}
\end{aligned}
$$

Total surface area of remaining solid
= total surface area of cylinder + curved surface of cone -area of base of cylinder

$$
\begin{aligned}
& =2 \pi r h+2 \pi r^{2}+\pi r l-\pi r^{2} \\
& =2 \pi r h+\pi r^{2}+\pi r l
\end{aligned}
$$

$$
\begin{aligned}
& =\pi r(2 h+r+l) \\
& =\frac{22}{7_{1}} \times 0.17(2 \times 2.4+0.7+2.5) \\
& =2.2 \times 8 \\
& =17.6 \\
& \approx 18 \mathrm{~cm}^{2}
\end{aligned}
$$

9. Height of cylinder, $h=10 \mathrm{~cm}$

Radius of lease of cylinder and hemiphere, $r=3.5 \mathrm{~cm}$
Total surface area of toy
$=$ curved surface area of cylinder
 $+2 x$ curved surface area of hemisphere

$$
\begin{aligned}
& =2 \pi r h+2 \times 2 \pi r^{2} \\
& =2 \pi r h+4 \pi r^{2} \\
& =2 \pi r(h+2 r) \\
& =2 \times \frac{22}{7_{1}} \times \frac{0.5}{3.5}(10+2 \times 3.5) \\
& =22 \times 17 \\
& =374 \mathrm{~cm}^{2}
\end{aligned}
$$

