CBSEASSISTANCE.COM

REAL NUMBERS

CLASS 10
ASSIGNMENT 1 SOLUTIONS

1. The maximum number of boxes is the HCF of 1134 and 1215.
$1134=2 \times 3^{4} \times 7$
$1215=3^{5} \times 5$
$\mathrm{HCF}=3^{4}=81$
Hence, the maximum number of boxes $=81$
2. The time when the two bells will ring together again is the LCM of 40 and 60.
$40=2^{3} \times 5$
$60=2^{2} \times 3 \times 5$
$\mathrm{LCM}=2^{3} \times 3 \times 5=120$
Required time $=120$ minutes $=2$ hours
Hence, the two bells will ring together again at $9+2=11$ a.m.
3. Let a be any positive integer and $b=6$.

By Euclid's Division Lemma
$a=6 q+r, 0 \leq r<6$
Possible values of $r=0,1,2,3,4,5$
When $r=0, a=6 q+0=2(3 q)=2 m$, where $m=3 q$; which is even.
When $r=1, a=6 q+1=2(3 q)+1=2 m+1$, where $m=3 q$; which is odd.
When $r=2, a=6 q+2=2(3 q+1)=2 m$, where $m=3 q+1$; which is even.
When $r=3, a=6 q+3=6 q+2+1=2(3 q+1)+1=2 m+1$, where $m=3 q+1$; which is odd.
When $r=4, a=6 q+4=2(3 q+2)=2 m$, where $m=3 q+2$; which is even.
When $r=5, a=6 q+5=6 q+4+1=2(3 q+2)+1=2 m+1$, where $m=3 q+2$; which is odd.
Thus, when $a=6 q+1$ or $6 q+3$ or $6 q+5$, then a is odd.
Hence, every odd integer is of the form $6 q+1$ or $6 q+3$ or $6 q+5$.
4. Let n be any positive integer and $b=3$

By Euclid's Division Lemma
$n=3 q+r, 0 \leq r<3$
Possible values of $r=0,1,2$
Case 1: When $r=0$
$n=3 q+0=3 q$, which is divisible by 3 .
$n+2=3 q+2$, which is not divisible by 3 .
$n+4=3 q+4=3 q+3+1=3(q+1)+1=3 m+1$, where
$m=q+1$; which is not divisible by 3 .
Case 2: When $r=1$
$n=3 q+1$, which is not divisible by 3 .
$n+2=3 q+1+2=3 q+3=3(q+1)=3 m$, where $m=q+1$;
which is divisible by 3 .
$n+4=3 q+1+4=3 q+5=3 q+3+2=3(q+1)+2=3 m+2$,
where $m=q+1$; which is not divisible by 3 .
Case 3: When $r=2$
$n=3 q+2$, which is not divisible by 3 .
$n+2=3 q+2+2=3 q+4=3 q+3+1=3(q+1)+1=3 m+1$, where $m=q+1$; which is not divisible by 3 .
$n+4=3 q+2+4=3 q+6=3(q+2)=3 m$, where $m=q+2$;
which is divisible by 3 .
Hence, one and only one out of $n, n+2, n+4$ is divisible by 3 , where n is any positive integer.
5. Let a number a be of the form $4 q+2, q \in N$.
$a=4 q+2=2(2 q+1)$
Thus, a is the product of 2 and some odd integer. For a to be a perfect square, the number $2 q+1$ must have 2 as one of its prime factors, which is not possible as $2 q+1$ is odd.
Hence, a number of the form $4 q+2, q \in N$ cannot be a perfect square.
6. Any odd positive integer is of the form $4 q+1$ or $4 q+3$
$(4 q+1)^{2}=16 q^{2}+8 q+1=8\left(2 q^{2}+q\right)+1=8 m+1$, where $m=2 q^{2}+q$
$(4 q+3)^{2}=16 q^{2}+24 q+9=16 q^{2}+24 q+8+1$
$=8\left(2 q^{2}+3 q+1\right)+1=8 m+1$, where $m=2 q^{2}+3 q+1$

Hence, the square of any odd positive integer is of the form $8 m+1$, where $m \in N$.
7. Case 1: When n is an even number.

Let $n=2 q$
$n^{2}-n=(2 q)^{2}-2 q=4 q^{2}-2 q=2\left(2 q^{2}-q\right)=2 m$, where $m=2 q^{2}-q$; which is even.
Case 2: When n is an odd number.
Let $n=2 q+1$
$n^{2}-n=(2 q+1)^{2}-(2 q+1)=4 q^{2}+4 q+1-2 q-1$
$=4 q^{2}+2 q=2\left(2 q^{2}+q\right)=2 m$, where $m=2 q^{2}+q$; which is even.
Since, any positive integer is either even or odd, hence in each case $n^{2}-n$ is always even.
8. Let three consecutive positive integers be $a, a+1, a+2$.

Let a be any positive integer and $b=3$
By Euclid's Division Lemma
$a=3 q+r, 0 \leq r<3$
Possible values of $r=0,1,2$
Case 1: When $r=0$
$a=3 q+0=3 q$, which is divisible by 3 .
$a+1=3 q+1$, which is not divisible by 3 .
$a+2=3 q+2$, which is not divisible by 3 .
Case 2: When $r=1$
$a=3 q+1$, which is not divisible by 3 .
$a+1=3 q+1+1=3 q+2$, which is not divisible by 3 .
$a+2=3 q+1+2=3 q+3=3(q+1)=3 m$, where $m=q+1$;
which is divisible by 3 .
Case 3: When $r=2$
$a=3 q+2$, which is not divisible by 3 .
$a+1=3 q+2+1=3 q+3=3(q+1)=3 m$, where $m=q+1$;
which is divisible by 3 .
$a+2=3 q+2+2=3 q+4=3 q+3+1=3(q+1)+1=3 m+1$, where $m=q+1$; which is not divisible by 3 .
Hence, only one out of every three consecutive positive integers is divisible by 3 .
9. Let a be any positive integer and $b=3$

By Euclid's Division Lemma
$a=3 q+r, 0 \leq r<3$
Possible values of $r=0,1,2$
Case 1: When $r=0, a=3 q+0=3 q$
Squaring both sides
$a^{2}=9 q^{2}=3\left(3 q^{2}\right)=3 k$, where $k=3 q^{2}$
Case 2: When $r=1, a=3 q+1$
Squaring both sides
$a^{2}=(3 q+1)^{2}=9 q^{2}+6 q+1=3\left(3 q^{2}+2 q\right)+1=3 k+1$, where
$k=3 q^{2}+2 q$
Case 3: When $r=2, a=3 q+2$
Squaring both sides
$a^{2}=(3 q+2)^{2}=9 q^{2}+12 q+4=9 q^{2}+12 q+3+1=$
$3\left(3 q^{2}+4 q+1\right)+1=3 k+1$, where $k=3 q^{2}+4 q+1$
Hence, the square of any positive integer is of the form $3 k$ or $3 k+1$, where $k \in N$.
10.Using Euclid's Division Lemma
$2346=1794 \times 1+552, r \neq 0$
$1794=552 \times 3+138, r \neq 0$
$552=138 \times 4+0$
HCF of 1794 and 2346 is 138.
Using Euclid's Division Lemma
$4761=138 \times 34+69, r \neq 0$
$138=69 \times 2+0$
HCF of 138 and 4761 is 69.
Hence, HCF of 1794,2346 and 4761 is 69.

