CBSEASSISTANCE.COM

POLYNOMIALS

CLASS 9

Basic Concepts

1. An algebraic expression in which the variables involved have only non negative integral powers is called a polynomial. For example, $x^{2}+5 x-$ $6, x^{3}-7 x^{2}+11, x^{5}-3 x+2, x^{2}+\sqrt{5}, x^{4}+5 x^{3}-2 x^{2}+7 x-3$, etc. are polynomials.
2. In the $5 x^{3}-4 x^{2}+6 x-3$, we say that the coefficients of x^{3}, x^{2} and x are $5,-4$ and 6 respectively, and we also say that (-3) is the constant term in it.
3. In case of a polynomial in one variable, the highest power of the variable is called the degree of the polynomial. For example, $2 x+3$ is a polynomial in x of degree $1,4 x^{2}-\frac{3}{2} x-5$ is a polynomial in x of degree 2 , and $3 x^{4}-$ $5 x^{2}+1$ is a polynomial in x of degree 4 .
4. A polynomial of degree 1 is called a linear polynomial. For example, $3 x+5$ is a linear polynomial in x.
5. A polynomial of degree 2 is called a quadratic polynomial. For example, $x^{2}+5 x-\frac{1}{2}$ is a quadratic polynomial in x.
6. A polynomial of degree 3 is called a cubic polynomial. For example, $4 x^{3}-$ $3 x^{2}+7 x+1$ is a cubic polynomial in x.
7. A polynomial of degree 4 is called a biquadratic polynomial. For example, $x^{4}-3 x^{3}+2 x^{2}+5 x-3$ is a biquadratic polynomial in x.
8. A polynomial having one term is called a monomial. Thus, $5 x, 7 x^{2}, 11 x^{3}, 3 x y$ and $2 x y z$ are some examples of monomials in one, two and three variables.
9. A polynomial having two terms is called a binomial. Thus, $x+1,2 x^{3}+$ 5, $x^{2}-1, x^{6}+1, x+y, x^{2}+y^{2}$ are some examples of binomials in one and two variables.
10.A polynomial having three terms is called a trinomial. Thus, $x^{2}-3 x+$ $1, x^{3}-7 x^{2}+11, x+y+z$ are some examples of trinomials.
10. A polynomial containing one term only, consisting of a constant is called a constant polynomial. For example, $3,-5, \frac{7}{8}$, etc. are all constant polynomials. In general, every real number is a constant polynomial. The degree of a non - zero constant polynomial is zero.
11. A polynomial consisting of one term namely zero only, is called a zero polynomial. The degree of zero polynomial is not defined.
13.Let $p(x)$ be a polynomial. If $p(\alpha)=0$, then we say that α is a zero of the polynomial $p(x)$.
Finding the zeroes of a polynomial $p(x)$ means solving the equation $p(x)=$ 0.
14.The constant polynomial has no zero.
15.Every real number is a zero of the zero polynomial.
16.A linear polynomial has one and only one zero.
17.If a polynomial $p(x)$ is divided by $g(x)=x-a$, then the remainder is given by $p(a)$ where degree of $p(x) \geq$ degree of $g(x)$
12. Factor Theorem: Let $p(x)$ be a polynomial of degree $n>1$ and let a be any real number.
(i) If $p(a)=0$, then $(x-a)$ is a factor of $p(x)$.
(ii) If $(x-a)$ is a factor of $p(x)$, then $p(a)=0$.
13. Following identities are true for all values of the variables a, b and c.
(i) $(a+b)^{2}=a^{2}+2 a b+b^{2}$
(ii) $(a-b)^{2}=a^{2}-2 a b+b^{2}$
(iii) $(a+b)(a-b)=a^{2}-b^{2}$
(iv) $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a$
(v) $(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$
(vi) $(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)$
(vii) $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
(viii) $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
(ix) $a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
