CBSEASSISTANCE.COM

NUMBER SYSTEM
 CLASS 9

Basic Concepts

1. A number is called a rational number, if it can be written in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$.
2. There are infinitely many rational numbers between any two given rational numbers.
3. A number is called an irrational number if it cannot be written in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$.
4. All the rational and irrational numbers make up the collection of real numbers.
5. Every real number is represented by a unique point on the number line. Also, every point on the number line represents a unique real number.
6. The decimal expansion of a rational number is either terminating or non terminating repeating. Moreover, a number whose decimal expansion is terminating or non - terminating repeating, is rational.
7. The decimal expansion of an irrational number is non - terminating non repeating. Moreover, a number whose decimal expansion is non terminating non - repeating, is irrational.
8. The sum or difference of a rational number and an irrational number is irrational.
9. The product or quotient of a non - zero rational number with an irrational number is irrational.
10.If we add, subtract, multiply or divide two irrationals, the result may be rational or irrational.
11.For positive real numbers a and b, the following identities hold:
(i) $\sqrt{a b}=\sqrt{a} \sqrt{b}$
(ii) $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$
(iii) $(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})=a-b$
(iv) $(a+\sqrt{b})(a-\sqrt{b})=a^{2}-b$
(v) $(\sqrt{a}+\sqrt{b})^{2}=a+2 \sqrt{a b}+b$
10. When the denominator of an expression contains a term with a square root (or a number under a radical sign), the process of converting it to an equivalent expression whose denominator is a rational number is called rationalising the denominator.
11. To rationalise the denominator of $\frac{1}{\sqrt{a}+b}$, we multiply this by $\frac{\sqrt{a}-b}{\sqrt{a}-b}$, where a and b are integers.
14.Let $a>0$ be a real number an p and q be rational numbers, then
(i) $a^{p} \cdot a^{q}=a^{p+q}$
(ii) $\left(a^{p}\right)^{q}=a^{p q}$
(iii) $\frac{a^{p}}{a^{q}}=a^{p-q}, p>q$
(iv) $a^{p} \cdot b^{p}=(a b)^{p}$
