CBSEASSISTANCE.COM

INTRODUCTION TO TRIGONOMETRY CLASS 10

Basic Concepts

- 1. In trigonometry, we deal with relations between the sides and the angles of a triangle.
- 2. Ratios of the sides of a right angled triangle with respect to its acute angles, are called trigonometric ratios of the angle.
- 3. For ∠A, AC is the base, BC the perpendicular and AB is the hypotenuse. For ∠B, BC is the base, AC the perpendicular and AB is the hypotenuse.

4. Six trigonometrical ratios

(i) $sine \theta = \frac{Perpendicular}{Hypotenuse} = \frac{y}{r}$, sine θ is written as $\sin \theta$.

(ii)
$$cosine \ \theta = \frac{Base}{Hypotenuse} = \frac{x}{r}$$
, $cosine \ \theta$ is written as $cos \ \theta$.

(iii)
$$tangent \theta = \frac{Perpendicular}{Base} = \frac{y}{x}$$
, tangent θ is written as $\tan \theta$.

(iv) cotangent
$$\theta = \frac{Base}{Perpendicular} = \frac{x}{y}$$
, cotangent θ is written as $\cot \theta$.

(v) secant
$$\theta = \frac{Hypotenuse}{Base} = \frac{r}{x}$$
, secant θ is written as sec θ .

(vi) cosecant
$$\theta = \frac{Hypotenuse}{Perpendicular} = \frac{r}{y}$$
, cosecant θ is written as cosec θ .

5. Relations between trigonometric ratios

(a) Reciprocal relations

(i)
$$\operatorname{cosec} \theta = \frac{1}{\sin \theta} \operatorname{or} \sin \theta = \frac{1}{\operatorname{cosec} \theta} \operatorname{or} \sin \theta \operatorname{cosec} \theta = 1$$

(ii)
$$\sec \theta = \frac{1}{\cos \theta} \text{ or } \cos \theta = \frac{1}{\sec \theta} \text{ or } \cos \theta \sec \theta = 1$$

(iii)
$$\cot \theta = \frac{1}{\tan \theta} \operatorname{or} \tan \theta = \frac{1}{\cot \theta} \operatorname{or} \tan \theta \cot \theta = 1$$

(b) Quotient relations

(i)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

(ii)
$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

- 6. $\sin A$ is a symbol which denotes the ratio $\frac{perpendicular}{hypotenuse}$. It does not mean the product of *sin* and *A* i.e. $\sin A \neq \sin \times A$. In fact *sin* separated from *A* has no meaning. Similar interpretations follow for other trigonometric ratios.
- 7. Table of values of various trigonometric ratios 0^0 , 30^0 , 45^0 , 60^0 , 90^0 .

$\begin{array}{c} T - \theta \rightarrow \\ ratios \downarrow \end{array}$	0°	30°	45°	60°	90°
sin θ	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cos θ	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
tan θ	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Not defined
cot θ	Not defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0
sec θ	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	Not defined
cosec θ	Not defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1

Easier way to memorize the first row (values of sine ratio) as

0°	30°	45°	60°	90°
$\sqrt{\frac{0}{4}}$	$\sqrt{\frac{1}{4}}$	$\sqrt{\frac{2}{4}}$	$\sqrt{\frac{3}{4}}$	$\sqrt{\frac{4}{4}}$
= 0	$=\frac{1}{2}$	$=\frac{1}{\sqrt{2}}$	$=\frac{\sqrt{3}}{2}$	= 1

8. Trigonometric ratios of complementary angles

(i) $\sin(90^0 - \theta) = \cos\theta$

sin

- (ii) $\cos(90^{\circ} \theta) = \sin \theta$
- (iii) $\tan(90^0 \theta) = \cot \theta$
- (iv) $\cot(90^0 \theta) = \tan \theta$
- (v) $\sec(90^{\circ} \theta) = \csc \theta$
- (vi) $cosec (90^{0} \theta) = \sec \theta$

9. Trigonometric Identities

(a) An equation involving trigonometric ratios of an angle θ (say) is said to be a trigonometric identity, if it is satisfied for all values of θ for which the given trigonometric ratios are defined.

(b) Some important trigonometric identities:

- (i) $\sin^2 \theta + \cos^2 \theta = 1$ or $\sin^2 \theta - 1 = \cos^2 \theta$ or $\cos^2 \theta - 1 = \sin^2 \theta$
- (ii) $\sec^2 \theta \tan^2 \theta = 1$ or $1 + \tan^2 \theta = \sec^2 \theta$ or $\tan^2 \theta = \sec^2 \theta - 1$
- (iii) $cosec^2\theta \cot^2\theta = 1$ or $cosec^2\theta = 1 + \cot^2\theta$ or $\cot^2\theta = cosec^2\theta - 1$
- (c) The following steps should be kept in mind while proving trigonometric identities:
- (i) Start with more complicated side of the identity and prove it equal to the other side.
- (ii) If the identity contains sine, cosine and other trigonometric ratios, then express all the ratios in terms of sine and cosine.
- (iii) If one side of an identity cannot be easily reduced to the other side value, then simplify both sides and prove them identically equal.
- (iv) While proving identities, never transfer terms from one side to another.