CBSEASSISTANCE.COM

POLYNOMIALS
 CLASS 10

Basic Concepts

1. An expression of the form $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$, where $a x^{2}+b x+c$, is called a polynomial in x of degree n.
Here, $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ are real numbers and each power of x is a non negative integer.
2. The exponent of the highest degree term in a polynomial is known as its degree. A polynomial of degree 0 is called a constant polynomial.
3. A polynomial of degree 1 is called a linear polynomial. A linear polynomial is of the form $p(x)=a x+b$, where $a \neq 0$.
4. A polynomial of degree 2 is called a quadratic polynomial. A quadratic polynomial is of the form $p(x)=a x^{2}+b x+c$, where $a \neq 0$.
5. A polynomial of degree 3 is called a cubic polynomial. A cubic polynomial is of the form $p(x)=a x^{3}+b x^{2}+c x+d$, where $a \neq 0$.
6. A polynomial of degree 4 is called a biquadratic polynomial. A biquadratic polynomial is of the form $p(x)=a x^{4}+b x^{3}+c x^{2}+d x+e$, where $a \neq 0$.
7. If $p(x)$ is a polynomial in x and if α is any real number, then the value obtained by putting $x=\alpha$ in $p(x)$ is called the value of $p(x)$ at $x=\alpha$. The value of $p(x)$ at $x=\alpha$ is denoted by $p(\alpha)$.
8. A real number α is called a zero of the polynomial $p(x)$, if $p(\alpha)=0$.
9. A polynomial of degree n can have at most n real zeroes.
10. Geometrically the zeroes of a polynomial $p(x)$ are the $x-$ coordinates of the points, where the graph of $p(\alpha)=0$ intersects x - axis.
11.Zero of the linear polynomial $a x+b$ is $\frac{-b}{a}=\frac{- \text { constant term }}{\text { coefficient of } x}$
12.If α and β are the zeroes of the quadratic polynomial
$p(x)=a x^{2}+b x+c, a \neq 0$, then
$\alpha+\beta=\frac{-b}{a}=\frac{- \text { coefficient of } x^{2}}{\text { coefficient of } x^{3}}$,

$$
\alpha \beta=\frac{c}{a}=\frac{\text { constant term }}{\text { coefficient of } x^{2}}
$$

13.If α, β and γ are the zeroes of a cubic polynomial $p(x)=a x^{3}+b x^{2}+c x+d, a \neq 0$, then $\alpha+\beta+\gamma=\frac{-b}{a}=\frac{- \text { coefficient of } x^{2}}{\text { coefficient of } x^{3}}$ $\alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a}=\frac{\text { coefficient of } x}{\text { coefficient of } x^{3}}$ $\alpha \beta \gamma=\frac{-d}{a}=\frac{- \text { constant term }}{\text { coefficient of } x^{3}}$
14.A quadratic polynomial whose zeroes are α, β is given by $p(x)=x^{2}-(\alpha+\beta) x+\alpha \beta$
$=x^{2}-($ sum of zeroes $) x+$ product of zeroes.
15.A cubic polynomial whose zeroes are α, β, γ is given by $p(x)=x^{3}-(\alpha+\beta+\gamma) x^{2}+(\alpha \beta+\beta \gamma+\gamma \alpha) x-\alpha \beta \gamma$ $=x^{3}-($ sum of the zeroes $) x^{2}+$ (sum of the product of the zeroes taken two at a time) $x-$ product of zeroes.
16.The division algorithm states that given any polynomial $p(x)$ and any non zero polynomial $g(x)$, there exist polynomials $q(x)$ and $r(x)$ such that $p(x)=g(x) \cdot q(x)+r(x)$, where $r(x)=0$ or degree $r(x)<$ degree $g(x)$.

