CBSEASSISTANCE.COM

REAL NUMBERS CLASS 10

Basic Concepts

- 1. Given positive integers a and b, there exist unique integers q and r satisfying a = bq + r, $0 \le r < b$. This result is known as **Euclid's division lemma**.
- 2. An algorithm is a series of well defined steps which gives a procedure for solving a type of problem.
- 3. A lemma is a proven statement used for proving another statement.
- 4. HCF of two positive integers *a* and *b* is the largest positive integer *d* that divides *a* and *b*.
- 5. Euclid's Division Algorithm: To obtain the HCF of two positive integers, say c and d with c > d, we follow the steps below:

Step 1. Apply Euclid's division lemma to find *q* and *r* where c = dq + r, $0 \le r < d$.

Step 2. If r = 0, then, *d* is the HCF of *c* and *d*. If $r \neq 0$, then apply Euclid's division lemma to *d* and *r*.

Step 3. Continue this process till the remainder is zero. The divisor at this stage will be the required HCF.

6. **The Fundamental Theorem of Arithmetic:** Every composite number can be expressed (factorised) as a product of primes, and this factorisation is unique, apart from the order in which the prime factors occur.

OR

The prime factorisation of a natural number is unique, except for the order of its factors.

- 7. Any number which cannot be expressed in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$ is called an irrational number.
- 8. Let p be a prime number. If p divides a^2 , then p divides a, where a is a positive integer.
- 9. The sum or difference of a rational and an irrational number is irrational.

- 10. The product and quotient of a non zero rational number and an irrational number is irrational.
- 11.Let x be a rational number whose decimal expansion terminates. Then x can be expressed in the form $\frac{p}{q}$, where p and q are coprime and the prime factorisation of q is of the $2^n 5^m$, where n and m are non negative integers.
- 12.Let $x = \frac{p}{q}$ be a rational number, such that the prime factorisation of q is of the form $2^n 5^m$, where n and m are non negative integers. Then x has a decimal expansion which terminates.
- 13. If $x = \frac{p}{q}$ is a rational number, such that the prime factorisation of q is of the form $2^n 5^m$, where m and n are whole numbers. If m = n, then the decimal expansion of x will terminate after m decimal places of decimal. If m > n, then the decimal expansion of x will terminate after m places of decimal. If n > m, then the decimal expansion of x will terminate after n places of decimal. If n > m, then the decimal expansion of x will terminate after n places of decimal.
- 14.Let $x = \frac{p}{q}$ be a rational number, such that the prime factorisation of q is not of the form $2^n 5^m$, where n and m are non negative integers. Then x has a decimal expansion which is non terminating repeating (recurring).
- 15. The decimal expansion of every rational number is either terminating or non terminating repeating.