CBSEASSISTANCE.COM

REAL NUMBERS
 CLASS 10

Basic Concepts

1. Given positive integers a and b, there exist unique integers q and r satisfying $a=b q+r, 0 \leq r<b$. This result is known as Euclid's division lemma.
2. An algorithm is a series of well defined steps which gives a procedure for solving a type of problem.
3. A lemma is a proven statement used for proving another statement.
4. HCF of two positive integers a and b is the largest positive integer d that divides a and b.
5. Euclid's Division Algorithm: To obtain the HCF of two positive integers, say c and d with $c>d$, we follow the steps below:
Step 1. Apply Euclid's division lemma to find q and r where $c=d q+r$, $0 \leq r<d$.
Step 2. If $r=0$, then, d is the HCF of c and d. If $r \neq 0$, then apply Euclid's division lemma to d and r.
Step 3. Continue this process till the remainder is zero. The divisor at this stage will be the required HCF.
6. The Fundamental Theorem of Arithmetic: Every composite number can be expressed (factorised) as a product of primes, and this factorisation is unique, apart from the order in which the prime factors occur.
OR
The prime factorisation of a natural number is unique, except for the order of its factors.
7. Any number which cannot be expressed in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$ is called an irrational number.
8. Let p be a prime number. If p divides a^{2}, then p divides a, where a is a positive integer.
9. The sum or difference of a rational and an irrational number is irrational.
10.The product and quotient of a non - zero rational number and an irrational number is irrational.
10. Let x be a rational number whose decimal expansion terminates. Then x can be expressed in the form $\frac{p}{q}$, where p and q are coprime and the prime factorisation of q is of the $2^{n} 5^{m}$, where n and m are non - negative integers.
12.Let $x=\frac{p}{q}$ be a rational number, such that the prime factorisation of q is of the form $2^{n} 5^{m}$, where n and m are non negative inteegers. Then x has a decimal expansion which terminates.
13.If $x=\frac{p}{q}$ is a rational number, such that the prime factorisation of q is of the form $2^{n} 5^{m}$, where m and n are whole numbers. If $m=n$, then the decimal expansion of x will terminate after m decimal places of decimal. If $m>n$, then the decimal expansion of x will terminate after m places of decimal. If $n>m$, then the decimal expansion of x will terminate after n places of decimal.
11. Let $x=\frac{p}{q}$ be a rational number, such that the prime factorisation of q is not of the form $2^{n} 5^{m}$, where n and m are non - negative integers. Then x has a decimal expansion which is non - terminating repeating (recurring).
15.The decimal expansion of every rational number is either terminating or non - terminating repeating.
