CBSEASSISTANCE.COM

ARITHMETIC PROGRESSION ASSIGNMENT NO. 5

- 1. If the sum of first n terms of an A.P. is given by $S_n = 4n^2 3n$, find the n^{th} term of the A.P.
- 2. The sum of three numbers in an A.P. is 27 and their product is 405. Find the numbers.
- 3. If S_n denotes the sum of first n terms of an A.P., prove that $S_{12} = 3(S_8 S_4)$
- 4. If the numbers a, b, c, d, e form an A.P., then find the value of a 4b + 6c 4d + e
- 5. If $(m+1)^{th}$ term of an A.P. is twice the $(n+1)^{th}$ term, prove that $(3m+1)^{th}$ term is twice the $(m+n+1)^{th}$ term.
- 6. The p^{th} term of an A.P. is q and q^{th} term is p, find its $(p+q)^{th}$ term.
- 7. If the sum of m terms of an A.P. is same as the sum of n terms, show that the sum of its (m + n) terms is zero.
- 8. If the sum of first m terms of an A.P. is n and sum of first n terms is m, then show that the sum of its first (m + n) terms is -(m + n).
- 9. Find the sum of all three digit numbers which leave the remainder 2 when divided by 5.
- 10. If m^{th} term of an A.P. is $\frac{1}{n}$ and n^{th} term is $\frac{1}{m}$, show that the sum of its mn terms is $\frac{1}{2}(mn+1)$.
- 11. If S_1 , S_2 , S_3 be the sums of n, 2n and 3n terms respectively of an A.P., prove that $S_3 = 3(S_2 S_1)$.
- 12. Prove that no matter what the real numbers a and b are, the sequence with n^{th} term a + nb is always an A.P. What is the common difference? What is the sum of first 20 terms?