CBSEASSISTANCE.COM

QUADRATIC EQUATIONS
 ASSIGNMENT 16 SOLUTIONS

1. Let the original speed be $x \mathrm{~km} / \mathrm{h}$

Reduced speed $=(x-100) \mathrm{km} / \mathrm{h}$
Distance $=3000 \mathrm{~km}$
Time taken at original speed $=\frac{\text { distance }}{\text { speed }}=\frac{3000}{x}$ hours
Time taken at reduced speed $=\frac{3000}{x-100}$ hours
According to the given condition

$$
\begin{aligned}
& \frac{3000}{x-100}-\frac{3000}{x}=1 \\
& 3000\left(\frac{1}{x-100}-\frac{1}{x}\right)=1 \\
& 3000\left(\frac{x-x+100}{(x-100) x}\right)=1 \\
& 300000=x^{2}-100 x \\
& x^{2}-100 x-300000=0 \\
& x^{2}-600 x+500 x-300000=0 \\
& x(x-600)+500(x-600)=0 \\
& (x-600)(x+500)=0
\end{aligned}
$$

Either $x-600=0$ or $x+500=0$
$x=600$ or $x=-500$
Original speed $=600 \mathrm{~km} / \mathrm{h}$
Original time $=\frac{3000}{600}=5$ hours
2. Total amount $=$ Rs. 800

Let number of books $=x$
New number of books $=x+4$
Cost of each book $=$ Rs. $\frac{800}{x}$
Cost of each book $=$ Rs. $\frac{800}{x+4}$

$$
\begin{aligned}
& \frac{800}{x}-\frac{800}{x+4}=10 \\
& 800\left(\frac{1}{x}-\frac{1}{x+4}\right)=10 \\
& 80\left(\frac{x+4-x}{x(x+4)}\right)=1 \\
& 320=x^{2}+4 x \\
& x^{2}+4 x-320=0 \\
& x^{2}+20 x-16 x-320=0 \\
& x(x+20)-16(x+20)=0 \\
& (x+20)(x-16)=0
\end{aligned}
$$

Either $x+20=0$ or $x-16=0$
$x=-20$ or $x=16$
We reject (-20) as number of books cannot be negative.
Hence, number of books $=16$
3. Distance $=300 \mathrm{~km}$

Let the usual speed $=x \mathrm{~km} / \mathrm{h}$
Increased speed $=(x+5) \mathrm{km} / \mathrm{h}$
Time taken at usual speed $=\frac{\text { distance }}{\text { speed }}=\frac{300}{x}$ hours
Time taken at increased speed $=\frac{300}{x+5}$ hours
According to the given condition
$\frac{300}{x}-\frac{300}{x+5}=2$
$300\left(\frac{1}{x}-\frac{1}{x+5}\right)=2$
$150(x+5-x)=x(x+5)$
$750=x^{2}+5 x$
$x^{2}+5 x-750=0$
$x^{2}+30 x-25 x-750=0$
$(x+30)(x-25)=0$
Either $x+30=0$ or $x-25=0$
$x=-30$ or $x=25$
We reject (-30) as speed cannot be negative
$\therefore x=25$

Hence, usual speed of train $=25 \mathrm{~km} / \mathrm{h}$
4. Distance $=12 \mathrm{~km}$

Speed of boat in still water $=11 \mathrm{~km} / \mathrm{h}$
Let the speed of stream $=x \mathrm{~km} / \mathrm{h}$
Speed while travelling downstream $=(11+x) \mathrm{km} / \mathrm{h}$
Speed while travelling upstream $=(11-x) \mathrm{km} / \mathrm{h}$
Time taken to travel 12 km downstream $=\frac{\text { distance }}{\text { speed }}=\frac{12}{11+x}$ hours
Time taken to travel 12 km upstream $=\frac{12}{11-x}$ hours
Total time $=2$ hours 45 minutes $=2 \frac{45}{60}$ hours $=2 \frac{3}{4}$ hours
According to the given condition
$\frac{12}{11+x}+\frac{12}{11-x}=2 \frac{3}{4}$
$12\left(\frac{1}{11+x}+\frac{1}{11-x}\right)=\frac{11}{4}$
$48(11-x+11+x)=11(11+x)(11-x)$
$48 \times 22=11\left(121-x^{2}\right)$
$96=121-x^{2}$
$x^{2}=25$
$x= \pm 5$
We reject (-5) as speed cannot be negative
$\therefore x=5$
Hence, speed of strean $=5 \mathrm{~km} / \mathrm{h}$
5. Total amount = Rs. 1200

Let cost of each book $=$ Rs. x
Increased price $=$ Rs. $(x+10)$
Number of books bought at original price $=\frac{1200}{x}$
Number of books bought at increased price $=\frac{1200}{x+10}$
According to the given condition

$$
\begin{aligned}
& \frac{1200}{x}-\frac{1200}{x+10}=10 \\
& 1200\left(\frac{1}{x}-\frac{1}{x+10}\right)=10
\end{aligned}
$$

$1200\left[\frac{x+10-x}{x(x+10)}\right]=10$
$1200=x^{2}+10 x$
$x^{2}+10 x-1200=0$
$x^{2}+40 x-30 x-1200=0$
$(x+40)(x-30)=0$
$x=30$ or (-40)
We reject (-40) as cost of book cannot be negative.
\therefore Cost of each book $=$ Rs. 30
6. Total number of apples $=300$

Let number of students $=x$
Increased number of students $=x+10$
Number of apples received by each student when number of students are $x=\frac{300}{x}$
Number of apples received by each student when number of students are $(x+10)=\frac{300}{x+10}$
According to the given condition
$\frac{300}{x}-\frac{300}{x+10}=1$
$300\left(\frac{1}{x}-\frac{1}{x+10}\right)=1$
$300\left[\frac{x+10-x}{x(x+10)}\right]=1$
$3000=x^{2}+10 x$
$x^{2}+10 x-3000=0$
$x^{2}+60 x-50 x-3000=0$
$x(x+60)-50(x+60)=0$
$(x+60)(x-50)=0$
Either $x+60=0$ or $x-50=0$

$$
x=-60 \text { or } x=50
$$

We reject (-60) as number of students cannot be negative.
$\therefore x=50$
Hence the number of students $=50$
7. Time $=30$ minutes $=\frac{30}{60}$ hours $=\frac{1}{2}$ hours

Let usual speed of aeroplane $=x \mathrm{~km} / \mathrm{h}$
Increased speed $=(x+250) \mathrm{km} / \mathrm{h}$
Total distance $=1500 \mathrm{~km}$
Time taken at usual speed $=\frac{\text { distance }}{\text { speed }}=\frac{1500}{x}$ hours
Time taken at increased speed $=\frac{1500}{x+250}$ hours
According to the given condition
$\frac{1500}{x}-\frac{1500}{x+250}=\frac{1}{2}$
$1500\left(\frac{1}{x}-\frac{1}{x+250}\right)=\frac{1}{2}$
$1500\left[\frac{x+250-x}{x(x+250)}\right]=\frac{1}{2}$
$75000=x^{2}+250 x$
$x^{2}+250 x-75000=0$
$x^{2}+1000 x-750 x-75000=0$
$(x+1000)(x-750)=0$
Either $x+1000=0$ or $x-750=0$
$x=-1000$ or 750
We reject (-1000) as speed cannot be negative.

$$
\therefore x=750
$$

Hence speed of aeroplane $=750 \mathrm{~km} / \mathrm{h}$
8. Total amount = Rs. 360

Let number of days of tour $=x$
Increased number of days $=(x+4)$
Daily expense for x days $=$ Rs. $\frac{360}{x}$
Daily expense for $(x+4)$ days $=$ Rs. $\frac{360}{x+4}$
According to the given condition
$\frac{360}{x}-\frac{360}{x+4}=3$
$360\left(\frac{1}{x}-\frac{1}{x+4}\right)=3$

$$
\begin{aligned}
& 120\left[\frac{x+4-x}{x(x+4)}\right]=1 \\
& 480=x^{2}+4 x \\
& x^{2}+4 x-480=0 \\
& x^{2}+24 x-20 x-480=0 \\
& x(x+24)-20(x+24)=0 \\
& (x+24)(x-20)=0
\end{aligned}
$$

Either $x+24=0$ or $x-20=0$
$x=20$ or -24
We reject (-24) as number of days cannot be negative.
$\therefore x=20$
Number of days $=20$
9. Let average speed $=x \mathrm{~km} / \mathrm{h}$

Time taken $=(x-1)$ hours
Distance $=30 \mathrm{~km}$
Speed \times time $=30$
$x(x-1)=30$
$x^{2}-x-30=0$
$x^{2}-6 x+5 x-30=0$
$x(x-6)+5(x-6)=30$
$(x-6)(x+5)=0$
Either $x-6=0$ or $x+5-0$
$x=6$ or (-5)
Time taken $=6-1=5$ hours
10. Let age of mother $=x$ years

Daughter's age $=(x-21)$ years
According to the given condition
$\frac{1}{12}[x(x-21)]=x-18$
$x^{2}-21 x=12 x-216$
$x^{2}-33 x+216=0$
$x^{2}-24 x-9 x+216=0$
$(x-24)(x-9)=0$
Either $x-24=0$ or $x-9=0$
$x=24$ or 9
We reject 9 as daughter's age for $x=9$ will be $9-21=-12$ which is not possible.
$\therefore x=24$
Mother's age $=24$ years
Daughter's age $=24-21=3$ years

