CBSEASSISTANCE.COM

REAL NUMBERS SOLUTION 2

If a and b are two odd positive integers such that $a>b$, then prove that one of the two numbers $\frac{a+b}{2}$ and $\frac{a-b}{2}$ is odd and the other is even.

Solution:

Let $a=4 m+1$ and $b=4 n+1$
$\frac{a+b}{2}=\frac{(4 m+1)+(4 n+1)}{2}=\frac{4 m+4 n+2}{2}=\frac{2(2 m+2 n+1)}{2}$
$=2 m+2 n+1=2(m+n)+1=2 q+1$, where $q=m+n$, which is odd
$\frac{a-b}{2}=\frac{(4 m+1)-(4 n+1)}{2}=\frac{4 m+1-4 n-1}{2}=\frac{4 m-4 n}{2}=\frac{4(m-n)}{2}$
$=2(m-n)=2 q$, where $q=m-n$, which is even.
\therefore If a and b are two odd positive integers such that $a>b$, then one of the two numbers $\frac{a+b}{2}$ and $\frac{a-b}{2}$ is odd and the other is even.
(Note: This question can also be solved by taking $a=2 m+1$ and $b=2 n+1$)

