CBSEASSISTANCE.COM

REAL NUMBERS SOLUTION 1

Prove that the product of two consecutive positive integers is divisible by 2.

Solution:

Let $(n-1)$ and n be two positive integers.
Their product $n(n-1)=n^{2}-n$
Any positive integer is of the form $2 q$ or $2 q+1$, for some integer q.
The following cases arise:

Case 1

When $n=2 q$
$n^{2}-n=(2 q)^{2}-2 q=4 q^{2}-2 q=2 q(2 q-1)$
$n^{2}-n=2 m$, where $m=q(2 q-1)$
$\therefore n^{2}-n$ is divisible by 2 .

Case 2

When $n=2 q+1$
$n^{2}-n=(2 q+1)^{2}-(2 q+1)=(2 q+1)(2 q+1-1)=2 q(2 q+1)$
$n^{2}-n=2 m$, where $m=q(2 q+1)$
$\therefore n^{2}-n$ is divisible by 2 .
Hence, $n^{2}-n$ is divisible by 2 for every positive integer n.
$(n-1) n$ is divisible by 2 .
\therefore The product of two consecutive positive integers is divisible by 2 .

