CBSEASSISTANCE.COM

REAL NUMBERS SOLUTION 8

Prove that if a positive integer is of the form $\mathbf{6 q + 5}$, then it is of the form $3 q+2$ for some integer q, but not conversely.

Solution:

Let $n=6 q+5$, where q is a positive integer.
We know that any positive integer is of the form $3 k$ or, $3 k+1$ or, $3 k+2$
$\therefore q=3 k$ or, $3 k+1$ or, $3 k+2$
If $q=3 k$, then

$$
\begin{aligned}
& n=6(3 k)+5 \\
& =18 k+5 \\
& =18 k+3+2 \\
& =3(6 k+1)+2=3 m+2, \text { where } m=6 k+1
\end{aligned}
$$

If $q=3 k+1$, then
$n=6(3 k+1)+5$
$=18 k+6+5$
$=18 k+11$
$=18 k+9+2$
$=3(6 k+3)+2$
$=3 m+2$, where $m=6 k+3$
If $q=3 k+2$, then

$$
\begin{aligned}
& n=6(3 k+2)+5 \\
& =18 k+12+5 \\
& =18 k+17 \\
& =18 k+15+2 \\
& =3(6 k+5)+2 \\
& =3 m+2, \text { where } m=6 k+5
\end{aligned}
$$

\therefore If a positive integer is of the form $6 q+5$, then it is of the form $3 q+2$.
Now let $n=3 q+2$, where q is a positive integer.
We know that any positive integer is of the form $6 q, 6 q+1,6 q+2,6 q+3,6 q+$ $4,6 q+5$

Now, if $q=6 q$
$n=3 q+2$
$n=3(6 q)+2$
$n=18 q+2$
$n=2(9 q+1)$
$n=2 m$, where $m=9 q+1$
Hence, $3 q+2$ is not of the form $6 q+5$.

