CBSEASSISTANCE.COM

REAL NUMBERS SOLUTION 6

Prove that the square of any positive integer is of the form 4q or 4q + 1, for some integer q.

Solution:

Let *a* be any positive integer and b = 2

By Euclid's division algorithm

 $a = 2m + r, 0 \le r < 2$

When r = 0, a = 2m

Squaring both sides

 $a^2 = (2m)^2 = 4m^2 = 4q$, where $q = m^2$

When r = 1, a = 2m + 1

Squaring both sides

$$a^{2} = (2m + 1)^{2}$$

= $(2m)^{2} + 2(2m)(1) + (1)^{2}$
= $4m^{2} + 4m + 1$
= $4(m^{2} + m) + 1$
= $4q + 1$, where $q = m^{2} + m$

Hence, the square of any positive integer is of the form 4q or 4q + 1 for some integer q.