CBSEASSISTANCE.COM

REAL NUMBERS
 SOLUTION 6

Prove that the square of any positive integer is of the form $4 q$ or $4 q+1$, for some integer q.

Solution:
Let a be any positive integer and $b=2$
By Euclid's division algorithm
$a=2 m+r, 0 \leq r<2$
When $r=0, a=2 m$
Squaring both sides
$a^{2}=(2 m)^{2}=4 m^{2}=4 q$, where $q=m^{2}$
When $r=1, a=2 m+1$
Squaring both sides
$a^{2}=(2 m+1)^{2}$
$=(2 m)^{2}+2(2 m)(1)+(1)^{2}$
$=4 m^{2}+4 m+1$
$=4\left(m^{2}+m\right)+1$
$=4 q+1$, where $q=m^{2}+m$
Hence, the square of any positive integer is of the form $4 q$ or $4 q+1$ for some integer q.

