CBSEASSISTANCE.COM

REAL NUMBERS
 SOLUTION 5

Prove that the square of any positive integer is of the form $3 m$ or, $3 m+1$ but not of the form $3 \boldsymbol{m}+2$.

Solution:

Let a be any positive integer and $b=3$.
By Euclid's division algorithm, $a=3 q+r, 0 \leq r<3$
Possible values of $r=0,1,2$
When $r=0, a=3 q$
Squaring both sides
$a^{2}=(3 q)^{2}=9 q^{2}=3\left(3 q^{2}\right)=3 m$, where $m=3 q^{2}$
When $r=1, a=3 q+1$
Squaring both sides
$a^{2}=(3 q+1)^{2}$
$=(3 q)^{2}+2(3 q)(1)+(1)^{2}$
$=9 q^{2}+6 q+1$
$=3\left(3 q^{2}+2 q\right)+1$
$=3 m+1, m=3 q^{2}+2 q$
When $r=2, a=3 q+2$
Squaring both sides
$a^{2}=(3 q+2)^{2}$

$$
\begin{aligned}
& =(3 q)^{2}+2(3 q)(2)+(2)^{2} \\
& =9 q^{2}+12 q+4 \\
& =9 q^{2}+12 q+3+1 \\
& =3\left(3 q^{2}+4 q+1\right)+1 \\
& =3 m+1, \text { where } m=3 q^{2}+4 q+1
\end{aligned}
$$

Hence, the square of any positive integer is of the form $3 m$ or, $3 m+1$ but not of the form $3 m+2$.

