CBSEASSISTANCE.COM

REAL NUMBERS
 SOLUTION 4

Show that any positive odd integer is of the form $\mathbf{6 q + 1}$ or $\mathbf{6 q + 3}$ or, $6 q+5$, where q is some integer.

Solution:

Let a be any positive integer and $b=6$.
By Euclid's division algorithm, $a=6 q+r, 0 \leq r<6$
Possible values of $r=0,1,2,3,4,5$
When $r=0, a=6 q=2(3 q)=2 m$, where $m=3 q$, which is even.
When $r=1, a=6 q+1=2(3 q)+1=2 m+1$, where $m=3 q$, which is odd.

When $r=2, a=6 q+2=2(3 q+1)=2 m$, where $m=3 q+1$, which is even.

When $r=3, a=6 q+3=6 q+2+1=2(3 q+1)+1=2 m+1$, where $m=3 q+1$, which is odd.

When $r=4, a=6 q+4=2(3 q+2)=2 m$, where $m=3 q+2$, which is even.

When $r=5, a=6 q+5=6 q+4+1=2(3 q+2)+1=2 m+1$, where $m=3 q+2$, which is odd

Hence, any positive odd integer is of the form $6 q+1$ or, $6 q+3$ or, $6 q+5$, where q is some integer.

