CBSEASSISTANCE.COM

REAL NUMBERS SOLUTION 21

The length, breadth and height of a room are $8 \mathbf{m ~ c m}, 6 \mathrm{~m} 75 \mathrm{~cm}$ and 4 m 50 cm , respectively. Determine the length of the longest rod which can measure the three dimensions of the room exactly.

Solution:

Length $=8 \mathrm{~m} 25 \mathrm{~cm}=825 \mathrm{~cm}$
Breadth $=6 \mathrm{~m} \mathrm{75} \mathrm{cm}=675 \mathrm{~cm}$
Height $=4 \mathrm{~m} 50 \mathrm{~cm}=450 \mathrm{~cm}$
The length of the longest rod which can measure the three dimensions of the room exactly is the HCF of $825 \mathrm{~cm}, 675 \mathrm{~cm}$ and 450 cm .

By Euclid's division algorithm
$825=675 \times 1+150$
$675=150 \times 4+75$
$150=75 \times 2+0$
HCF of 825 and 675 is 75.
By Euclid's division algorithm
$450=75 \times 6+0$
HCF of 450 and 75 is 75.
Hence, the length of the longest rod $=75 \mathrm{~cm}$

