CBSEASSISTANCE.COM

REAL NUMBERS

SOLUTION 11

For any positive integer n, prove that $n^3 - n$ is divisible by 6.

Solution:

$$n^3 - n = n(n^2 - 1) = n(n + 1)(n - 1)$$

Any positive integer is of the form $6q$, $6q + 1$, $6q + 2$, $6q + 3$, $6q + 4$, $6q + 5$
When $n = 6q$
 $(n - 1)n(n + 1)$
 $= (6q - 1)6q(6q + 1)$
 $= 6q(6q - 1)(6q + 1)$
 $= 6m$, where $m = q(6q - 1)(6q + 1)$
When $n = 6q + 1$
 $(n - 1)n(n + 1)$
 $= (6q + 1 - 1)(6q + 1)(6q + 1 + 1)$
 $= 6q(6q + 1)(6q + 2) = 6m$, where $m = q(6q + 1)(6q + 2)$
When $n = 6q + 2$
 $(n - 1)n(n + 1)$
 $= (6q + 2 - 1)(6q + 2)(6q + 2 + 1)$
 $= (6q + 1)(6q + 2)(6q + 3)$
 $= 6(6q + 1)(3q + 1)(2q + 1) = 6m$, where $m = (6q + 1)(3q + 1)(2q + 1)$

When
$$n = 6q + 3$$

 $(n - 1)n(n + 1)$
 $= (6q + 3 - 1)(6q + 3)(6q + 3 + 1)$
 $= (6q + 2)(6q + 3)(6q + 4)$
 $= 6(3q + 1)(2q + 1)(6q + 4) = 6m$, where $m = (3q + 1)(2q + 1)(6q + 4)$
When $n = 6q + 4$
 $(n - 1)n(n + 1)$
 $= (6q + 4 - 1)(6q + 4)(6q + 4 + 1)$
 $= (6q + 3)(6q + 4)(6q + 5)$
 $= 6(2q + 1)(3q + 2)(6q + 5) = 6m$, where $m = (2q + 1)(3q + 2)(6q + 5)$
When $n = 6q + 5$
 $(n - 1)n(n + 1)$
 $= (6q + 5 - 1)(6q + 5)(6q + 5 + 1)$
 $= (6q + 4)(6q + 5)(6q + 6)$
 $= 6(6q + 4)(6q + 5)(6q + 6)$
 $= 6(6q + 4)(6q + 5)(q + 1) = 6m$, where $m = (6q + 4)(6q + 5)(q + 1)$

Hence, for any positive integer n, prove that $n^3 - n$ divisible by 6.