CBSEASSISTANCE.COM

REAL NUMBERS

SOLUTION 11

For any positive integer n, prove that $\boldsymbol{n}^{\mathbf{3}}-\boldsymbol{n}$ is divisible by 6 .

Solution:

$n^{3}-n=n\left(n^{2}-1\right)=n(n+1)(n-1)$
Any positive integer is of the form $6 q, 6 q+1,6 q+2,6 q+3,6 q+4,6 q+5$
When $n=6 q$
$(n-1) n(n+1)$
$=(6 q-1) 6 q(6 q+1)$
$=6 q(6 q-1)(6 q+1)$
$=6 m$, where $m=q(6 q-1)(6 q+1)$
When $n=6 q+1$

$$
\begin{aligned}
& (n-1) n(n+1) \\
& =(6 q+1-1)(6 q+1)(6 q+1+1) \\
& =6 q(6 q+1)(6 q+2)=6 m, \text { where } m=q(6 q+1)(6 q+2)
\end{aligned}
$$

When $n=6 q+2$

$$
\begin{aligned}
& (n-1) n(n+1) \\
& =(6 q+2-1)(6 q+2)(6 q+2+1) \\
& =(6 q+1)(6 q+2)(6 q+3) \\
& =6(6 q+1)(3 q+1)(2 q+1)=6 m, \text { where } m=(6 q+1)(3 q+1)(2 q+1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { When } n=6 q+3 \\
& (n-1) n(n+1) \\
& =(6 q+3-1)(6 q+3)(6 q+3+1) \\
& =(6 q+2)(6 q+3)(6 q+4) \\
& =6(3 q+1)(2 q+1)(6 q+4)=6 m \text {, where } m=(3 q+1)(2 q+1)(6 q+4) \\
& \text { When } n=6 q+4 \\
& (n-1) n(n+1) \\
& =(6 q+4-1)(6 q+4)(6 q+4+1) \\
& =(6 q+3)(6 q+4)(6 q+5) \\
& =6(2 q+1)(3 q+2)(6 q+5)=6 m, \text { where } m=(2 q+1)(3 q+2)(6 q+5) \\
& \text { When } n=6 q+5 \\
& (n-1) n(n+1) \\
& =(6 q+5-1)(6 q+5)(6 q+5+1) \\
& =(6 q+4)(6 q+5)(6 q+6) \\
& =6(6 q+4)(6 q+5)(q+1)=6 m, \text { where } m=(6 q+4)(6 q+5)(q+1) \\
& \text { Hence, for any positive integer } n, \text { prove that } n^{3}-n \text { divisible by } 6 .
\end{aligned}
$$

