CBSEASSISTANCE.COM

REAL NUMBERS

SOLUTION 10

Prove that the product of three consecutive positive integers is divisible by 6.

Solution:

Let three consecutive integers be $n-1, n, n+1$,
Any positive integer is of the form $6 q, 6 q+1,6 q+2,6 q+3,6 q+4,6 q+5$
When $n=6 q$
$(n-1) n(n+1)$
$=(6 q-1) 6 q(6 q+1)$
$=6 q(6 q-1)(6 q+1)$
$=6 m$, where $m=q(6 q-1)(6 q+1)$
When $n=6 q+1$
$(n-1) n(n+1)$
$=(6 q+1-1)(6 q+1)(6 q+1+1)$
$=6 q(6 q+1)(6 q+2)=6 m$, where $m=q(6 q+1)(6 q+2)$
When $n=6 q+2$
$(n-1) n(n+1)$
$=(6 q+2-1)(6 q+2)(6 q+2+1)$
$=(6 q+1)(6 q+2)(6 q+3)$
$=6(6 q+1)(3 q+1)(2 q+1)=6 m$, where $m=(6 q+1)(3 q+1)(2 q+1)$
When $n=6 q+3$

$$
\begin{aligned}
& (n-1) n(n+1) \\
& =(6 q+3-1)(6 q+3)(6 q+3+1) \\
& =(6 q+2)(6 q+3)(6 q+4) \\
& =6(3 q+1)(2 q+1)(6 q+4)=6 m, \text { where } m=(3 q+1)(2 q+1)(6 q+4) \\
& \text { When } n=6 q+4 \\
& (n-1) n(n+1) \\
& =(6 q+4-1)(6 q+4)(6 q+4+1) \\
& =(6 q+3)(6 q+4)(6 q+5) \\
& =6(2 q+1)(3 q+2)(6 q+5)=6 m, \text { where } m=(2 q+1)(3 q+2)(6 q+5) \\
& \text { When } n=6 q+5 \\
& (n-1) n(n+1) \\
& =(6 q+5-1)(6 q+5)(6 q+5+1) \\
& =(6 q+4)(6 q+5)(6 q+6) \\
& =6(6 q+4)(6 q+5)(q+1)=6 m, \text { where } m=(6 q+4)(6 q+5)(q+1)
\end{aligned}
$$

Therefore, the product of three consecutive positive integer is divisible by 6 .

