CBSEASSISTANCE.COM

QUADRATIC EQUATIONS SOLUTION 1

A train, travelling at a uniform speed for 360 km, would have taken 48 minutes less to travel the same distance if its speed were 5 km/h more. Find the original speed of the train.

Solution:

Let the original speed of the train be x km/h

Then, the time taken to cover 360 km at usual speed = $\frac{360}{x}$ hours

Time taken to cover 360 km at increased speed = $\frac{360}{x+5}$ hours

According to the given condition

360 360 48
$\frac{1}{x} - \frac{1}{x+5} = \frac{1}{60}$
$360\left(\frac{1}{x} - \frac{1}{x+5}\right) = \frac{4}{5}$
$360\left[\frac{x+5-x}{x(x+5)}\right] = \frac{4}{5}$
$2250 = x^2 + 5x$
$x^2 + 5x - 2250 = 0$
$x^2 + 50x - 45x - 2250 = 0$
x(x+50) - 45(x+50) = 0
(x+50)(x-45) = 0
Either $x + 50 = 0$ or $x - 45 = 0$
Either $x = -50$ or $x = 45$

Rejecting x = -50 as speed of the train cannot be negative.

$\therefore x = 45$

Original speed of the train = 45 km/h

search con