CBSEASSISTANCE.COM

QUADRATIC EQUATIONS
 SOLUTION 1

A train, travelling at a uniform speed for 360 km , would have taken 48 minutes less to travel the same distance if its speed were $5 \mathrm{~km} / \mathrm{h}$ more. Find the original speed of the train.

Solution:

Let the original speed of the train be $x \mathrm{~km} / \mathrm{h}$
Then, the time taken to cover 360 km at usual speed $=\frac{360}{x}$ hours
Time taken to cover 360 km at increased speed $=\frac{360}{x+5}$ hours
According to the given condition
$\frac{360}{x}-\frac{360}{x+5}=\frac{48}{60}$
$360\left(\frac{1}{x}-\frac{1}{x+5}\right)=\frac{4}{5}$
$360\left[\frac{x+5-x}{x(x+5)}\right]=\frac{4}{5}$
$2250=x^{2}+5 x$
$x^{2}+5 x-2250=0$
$x^{2}+50 x-45 x-2250=0$
$x(x+50)-45(x+50)=0$
$(x+50)(x-45)=0$
Either $x+50=0$ or $x-45=0$
Either $x=-50$ or $x=45$
Rejecting $x=-50$ as speed of the train cannot be negative.
$\therefore x=45$
Original speed of the train $=45 \mathrm{~km} / \mathrm{h}$

