CBSEASSISTANCE.COM

POLYNOMIALS

ASSIGNMENT NO. 27

- 1. If the polynomials $2x^3 + ax^2 + 3x 5$ and $x^3 + x^2 2x + a$ leaves the remainder when divided by (x 2), find the value of a.
- 2. Prove that:

$$a^{3} + b^{3} + c^{3} - 3abc = \frac{1}{2}(a+b+c)[(a-b)^{2} + (b-c)^{2} + (c-a)^{2}]$$

- 3. Factorise: $(x^2 4x)(x^2 4x 1) 20$
- 4. Find the value of $x^3 + y^3 12xy + 64$ if x + y = -4.
- 5. Show that (x + 1) and (2x 3) are the factors of $2x^3 9x^2 + x + 12$. Also find the remaining factors.
- 6. Check whether the polynomial $p(x) = 4x^3 + 4x^2 x 1$ is a multiple of (2x + 1).
- 7. Find the value of $8x^3 + 27y^3$, if 2x + 3y = 8 and xy = 2.
- 8. Factorise: $7(x-2y)^2 25(x-2y) + 12$
- 9. Without finding the cubes, find the value of $\left(\frac{1}{4}\right)^3 + \left(\frac{1}{3}\right)^3 \left(\frac{7}{12}\right)^3$
- 10. Show that 1 and (-2) are the zeroes of the polynomial $x^3 + 2x^2 x 2$. Also find its third zero.