CBSEASSISTANCE.COM

POLYNOMIALS

ASSIGNMENT NO. 25

- 1. Using remainder theorem, find the remainder on dividing $x^4 + x^3 2x^2 + x + 1$ by x + 1.
- 2. Check whether $x^3 x + 1$ is a multiple of (2 3x).
- 3. If $x = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} \sqrt{2}}$ and $y = \frac{\sqrt{3} \sqrt{2}}{\sqrt{3} + \sqrt{2}}$, find the value of $x^2 + y^2 + xy$ if $\sqrt{6} = 2.4$
- 4. Simplify: $7x^3 + 8y^3 (4x + 3y) \cdot (16x^2 12xy + 9y^2)$
- 5. If $x = 1 \sqrt{2}$, find the value of $\left(x \frac{1}{x}\right)^3$
- 6. Simplify $(a + b)^3 + (a b)^3 + 6a(a^2 b^2)$
- 7. If A and B be the remainders when the polynomials $x^3 + 2x^2 5ax 7$ and $x^3 + ax^2 12x + 6$ are divided by (x + 1) and (x 2) respectively and 2A + B = 6, find the value of a.
- 8. What must be subtracted from $x^4 + 1$ so that $x^4 + 1$ is exactly divisible by (x 1). Write the resultant polynomial which is exactly divisible by

$$(x - 1)$$
.

- 9. Factorise: $8 27a^3 36a + 54a^2$
- 10. Find the value of $(x-a)^3 + (x-b)^3 + (x-c)^3 3(x-a)(x-b)(x-c)$ if a+b+c=3x.