CBSEASSISTANCE.COM

POLYNOMIALS

ASSIGNMENT NO. 23

- 1. If (x a) is a factor of the polynomial $x^3 mx^2 2nax + na^2$, prove that a = m + n, if $a \ne 0$.
- 2. Without actual division, show that $f(x) = 2x^4 6x^3 + 3x^2 + 3x 2$ is exactly divisible by $x^2 3x + 2$.
- 3. Find the quotient and remainder when $6x^4 + 11x^3 + 13x^2 3x + 27$ is divided by (3x + 4). Also check the remainder obtained by using remainder theorem.
- 4. Simplify: $(2x + y z)^2 (2x + y + z)^2$
- 5. If (x + 1) is a factor of $bx^3 + x^2 2x + 4b 9$, find the value of b?
- 6. Factorise: $x^2 + 3\sqrt{2}x + 4$
- 7. For what value of p, the polynomial $2x^3 + px^2 + 11x + p + 3$ is exactly divisible by (2x 1).
- 8. Factorise: $64x^3 + 125y^3 64z^3 + 240xyz$
- 9. If the polynomials $p(x) = 2x^3 + bx^2 + 3x 5$ and $q(x) = x^3 + x^2 4x + b$ leave the same remainder when divided by (x-2), prove that $b = \frac{-13}{3}$
- 10. If both (x-2) and $\left(x-\frac{1}{2}\right)$ are factors of px^2+5x+r , show that p=r.