CBSEASSISTANCE.COM

POLYNOMIALS
 ASSIGNMENT NO. 10

1. If $x+\frac{1}{x}=3$, then find the value of $x^{3}+\frac{1}{x^{3}}$
2. Using Remainder theorem, factorise: $2 x^{3}-13 x^{2}+26 x-15$
3. Verify that: $x y\left[(x+y)\left(\frac{1}{x}+\frac{1}{y}\right)-4\right]=(x-y)^{2}$
4. Assuming that x, y, z are positive real numbers and the exponents are all rational numbers, show that: $\left(\frac{x^{a}}{x^{b}}\right)^{a^{2}+a b+b^{2}} \cdot\left(\frac{x^{b}}{x^{c}}\right)^{b^{2}+b c+c^{2}} \cdot\left(\frac{x^{c}}{x^{a}}\right)^{c^{2}+c a+a^{2}}=1$
5. If $(x-2)$ and $\left(x-\frac{1}{2}\right)$ are factors of $p x^{2}+5 x+r$, then show that $p=r$.
6. The polynomial $p(x)=k x^{3}+9 x^{2}+4 x-8$ when divided by $(x+3)$ leaves a remainder $10(1-k)$. Find the value of k.
7. If x and y are two positive real numbers such that $8 x^{3}+27 y^{3}=730$ and $2 x^{2} y+3 x y^{2}=15$, then evaluate $2 x+3 y$.
8. Examine whether $(x+1)$ is a factor of $3 x^{2}+x-1$?
9. If x and y are two positive real numbers such that $x^{2}+4 y^{2}=17$ and $x y=$ 2 , then find the value of $(x+2 y)$.
10.If $(x-a)$ is the factor of $3 x^{2}-m x-n a$, then prove that $a=\frac{m+n}{3}$.
