CBSEASSISTANCE.COM

SAMPLE PAPER 2

CLASS 10

General Instructions:

1. All questions are compulsory.
2. The question paper consists of 31 questions divided into four sections A, B, C and D. Section - A comprises of 4 questions of 1 mark each; Section - B comprises of 6 questions of 2 marks each; Section - C comprises of 10 questions of 3 marks each and Section - D comprises of 11 questions of 4 marks each.
3. There is no overall choice in this question paper.
4. Use of calculator is not permitted.

SECTION - A

Question numbers 1 to 4 carry one mark each.

1. A ladder 10 m long reaches a window 6 m above the ground. Find the distance of the foot of the ladder from the base of the wall.
2. If $\tan \theta=\sqrt{3}$, find the value of $\sin \theta \cdot \cos \theta$
3. Find the value of $\frac{1}{\sin 30^{\circ}}-\frac{\sqrt{3}}{\cos 30^{0}}$
4. If class marks of a distribution are $10,20,30,40, \ldots \ldots \ldots$, find first and fifth class intervals.

SECTION - B

Question numbers 5 to 10 carry two marks each.

5. Find whether decimal expansion of $\frac{13}{64}$ is a terminating or non - terminating decimal. If it terminates, find the number of decimal places its decimal expansion has.
6. Complete the following factor tree and find the composite number x.

7. If $x+a$ is a zero of the polynomial $2 x^{2}+3 a x+1$, find the value of a.
8. D and E are points on sides AB and AC of a $\triangle \mathrm{ABC}$ such that $\mathrm{AD}=1 \mathrm{~cm}, \mathrm{DB}=3 \mathrm{~cm}, \mathrm{AE}$ $=2 \mathrm{~cm}$ and $\mathrm{EC}=6 \mathrm{~cm}$, then find whether $\mathrm{DE} \| \mathrm{BC}$.
9. If $x=p \sec \theta+q \tan \theta$ and $y=p \tan \theta+q \sec \theta$, then prove that $x^{2}-y^{2}=a^{2}-b^{2}$
10. Data regarding weights of students of class X of a school is given below. Calculate the average (mean) weight of students.

Weight (in kg)	$50-52$	$52-54$	$54-56$	$56-58$	$58-60$	$60-62$	$62-64$
Number of students	18	21	17	28	16	35	15

Question numbers 11 to 20 carry three marks each.

11. Show that $\frac{7 \sqrt{11}}{3}$ is an irrational number.
12. Solve for x and $y: \frac{x}{2}+\frac{2 y}{3}=-1 ; x-\frac{y}{3}=3$
13. If one zero of the polynomial $(a+2) x^{2}+6 x+5 a$ is reciprocal of the other, then find the value of a.
14. Determine graphically whether the following pair of linear equations $2 x-3 y=8 ; 4 x-6 y=16$ has:
i. a unique solution
ii. infinitely many solutions or
iii. no solution
15. In $\triangle A B C$, perpendicular drawn from A intersects $B C$ at D such that $3 D B=C D$. Prove that $2 \mathrm{AB}^{2}=2 \mathrm{AC}^{2}-\mathrm{BC}^{2}$.
16. In a right angled $\triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ}$. If $\frac{A B}{A C}=\frac{1}{\sqrt{2}}$, find $\frac{B C}{A C}$
17. If $15 \sin \theta=8 \cos \theta$, then find the value of: $\frac{1+\sin \theta}{1-\cos \theta} \cdot \cot \theta$
18. If $x=a \sin \theta$ and $y=b \tan \theta$, then show that $\frac{a^{2}}{x^{2}}-\frac{b^{2}}{y^{2}}=1$
19. In a certain city, traffic police gave following distribution showing number of victims in accidents in a year and their ages:

Age of victims (in years)	$0-15$	$15-30$	$30-45$	$45-60$	$60-75$	$75-90$
Number of victims	15	35	40	20	8	2

Draw a 'more than type' ogive for the data.
20. Find the mean and median for the following data:

Class	$0-4$	$4-8$	$8-12$	$12-16$	$16-20$
Frequency	3	5	9	5	3

SECTION - D

Question numbers 21 to 31 carry four marks each.

21. Rita, Krish and Zara start solving a puzzle together. They took 12, 18 and 21 minutes respectively to solve the puzzle. After how much time will they start solving a new puzzle together?
22. Jhanavi wants to make a rectangular park for children and others to play. The area of the park remains unchanged if its length is increased by 7 m and breadth is decreased by 3 m unit. Its area remains unaffected if the length is decreased by 7 m and breadth is increased by 5 m . Find the dimensions of the park.
Why did Jhanavi decide to make a park?
23. Divide the polynomial $x^{4}+7 x^{3}+7 x^{2}-30 x-55$ by $x+4$ and find the quotient and remainder. Also verify the division algorithm.
24. Two years ago, a father was five times old as his son. Two years later from today his age will be 8 years more than three times the age of his son. Find their present ages.
25 . Prove that the ratio of areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
25. In an equilateral $\triangle \mathrm{ABC}, \mathrm{E}$ is any point on BC such that $\mathrm{BE}=\frac{1}{4} \mathrm{BC}$. Prove that $16 \mathrm{AE}^{2}=$ $13 \mathrm{AB}^{2}$.
26. Prove that: $2\left(\sin ^{6} \mathrm{~A}+\cos ^{6} \mathrm{~A}\right)-3\left(\sin ^{4} \mathrm{~A}+\cos ^{4} \mathrm{~A}\right)+1=0$
27. In $\triangle \mathrm{ABC}$ (see figure), $\angle \mathrm{C}=90^{\circ}, \mathrm{AB}=x$ units and $\mathrm{AC}=3$ units.

Evaluate: $x \cos \mathrm{~B} \cdot \tan \mathrm{~A}+x^{2} \sin \mathrm{~A} \cdot \sec \mathrm{~B}+\sin \mathrm{C}$

29. If $x=\operatorname{cosec} \mathrm{A}+\cos \mathrm{A}$ and $y=\operatorname{cosec} \mathrm{A}-\cos \mathrm{A}$, then prove that:

$$
\left(\frac{2}{x+y}\right)^{2}+\left(\frac{x-y}{2}\right)^{2}-1=0
$$

30. Following frequency distribution shows the monthly expenditure incurred by some families in housing society:

Expenditure (in Rs.)	$5000-6000$	$6000-7000$	$7000-8000$	$8000-9000$	$9000-10000$	$10000-11000$	$11000-12000$
Number of families	4	8	9	20	13	7	1

Draw a 'less than type' ogive and a 'more than type' ogive. From these two curves, find the median.
31. In a certain locality, monthly consumptions of electricity (in units) of 122 families are given in the following table. If mode is given to be 139 , find the missing frequencies x and y.

Electricity consumed (in units)	$70-90$	$90-110$	$110-130$	$130-150$	$150-170$	$170-190$	$190-210$	$210-230$
Number of families	x	10	y	40	18	9	8	3

