## CBSEASSISTANCE.COM

## **POLYNOMIALS**

## ASSIGNMENT NO. 5

- 1. Evaluate by using suitable identity: (998)<sup>3</sup>
- 2. If  $x^2 1$  is a factor of  $ax^3 + bx^2 + cx + d$ , show that a + c = 0.
- 3. Factorise:

a. 
$$x^2 + \frac{1}{x^2} + 2 - 2x - \frac{2}{x}$$

- b.  $x^4 y^4$
- 4. Factorise:
- a.  $27a^3 + 8b^3 + 54a^2b + 36ab^2$
- b.  $8x^3 + 64$
- 5. If the polynomial  $p(x) = x^4 2x^3 + 3x^2 ax + 8$  is divided by (x 2) leaves the remainder 10, then find the value of a.
- 6. Factorise:  $x^3 3x^2 10x + 24$
- 7. Verify that:  $x^3 + y^3 + z^3 3xyz = \frac{1}{2}(x + y + z)[(x y)^2 + (y z)^2 + (z x)^2]$
- 8. Find the value of p if the polynomial  $p(x) = x^4 2x^3 + 3x^2 px + 3p 7$  when divided by (x + 1) leaves the remainder 19. Also find the remainder when p(x) is divided by (x + 2).