## CBSEASSISTANCE.COM

```
QUADRATIC EQUATIONS
ASSIGNMENT NO. 11
```

1. If the roots of the equation $(a-b) x^{2}+(b-c) x+(c-a)=0$ are equal, prove that $2 b=$ $a+c$.
2. If the equation $\left(1+m^{2}\right) x^{2}+2 m c x+c^{2}-a^{2}=0$ has equal roots, show that $c^{2}=a^{2}(1+$ $m^{2}$ )
3. If $\sin \theta$ and $\cos \theta$ are roots of the equation $a x^{2}+b x+c=0$, prove that $a^{2}-b^{2}+2 a c=0$
4. Determine the condition for one root of the quadratic equation $a x^{2}+b x+c=0$ to be thrice of the other.
5. Solve for $x$ : $2\left(\frac{2 x-1}{x+3}\right)-3\left(\frac{x+3}{2 x-1}\right)=5 ; x \neq-3, \frac{1}{2}$
6. Solve for the equation: $\frac{4}{x}-3=\frac{5}{2 x+3} ; x \neq 0,-\frac{3}{2}$, for $x$
7. Solve for $x: \frac{16}{x}-1=\frac{15}{x+1} ; x \neq 0,-1$
8. Using quadratic formula, solve the following equation for $x$ : $a b x^{2}+\left(b^{2}-a c\right) x-b c=0$
9. Find the value of $p$ for which the quadratic equation
$(2 p+1) x^{2}-(7 p+2) x+(7 p-3)=0$ has equal roots. Also find these roots.
10. Solve for $x: \frac{x-4}{x-5}+\frac{x-6}{x-7}=\frac{10}{3} ; x \neq 5,7$
