CBSEASSISTANCE.COM

ARITHMETIC PROGRESSIONS

ASSIGNMENT NO. 2

- 1. If the numbers a, b, c, d, e form an A.P., then find the value of a 4b + 6c 4d + e.
- 2. If $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ is the A.M. between *a* and *b*, then find the value of *n*.
- 3. If S_n , the sum of first *n* terms of an A.P., is given by $S_n = 5n^2 + 3n$, then find its n^{th} term.
- 4. If an A.P., the sum of first *n* terms is $\frac{3n^2}{2} + \frac{5n}{2}$, find its 25th term.
- 5. If the m^{th} term of an A.P. is $\frac{1}{n}$ and the n^{th} term is $\frac{1}{m}$, show that the sum of mn terms is $\frac{1}{2}(mn+1)$.
- 6. The sum of *n*, 2*n*, 3*n* terms of an A.P. are S_1 , S_2 , S_3 respectively, prove that $S_3 = 3(S_2 S_1)$.
- 7. The sums of *n* terms of three arithmetical progressions are S_1 , S_2 and S_3 . The first term of each is unity and the common differences are 1, 2 and 3 respectively, prove that $S_1 + S_3 = 2S_2$.
- 8. If in an A.P., the sum of *m* terms is equal to *n* and the sum of *n* terms is equal to *m*, then prove that the sum of (m + n) terms is -(m + n).
- 9. If the sum of *m* terms of an A.P. is the same as the sum of its *n* terms, show that the sum of its (m + n) terms is zero.
- 10. The sum of the first p, q, r terms of an A.P. are a, b, c respectively, show that

$$\frac{a}{p}(q-r) + \frac{b}{q}(r-p) + \frac{c}{r}(p-q) = 0.$$