## CBSEASSISTANCE.COM

## ARITHMETIC PROGRESSIONS <br> ASSIGNMENT NO. 2

1. If the numbers $a, b, c, d, e$ form an A.P., then find the value of $a-4 b+6 c-4 d+e$.
2. If $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ is the A.M. between $a$ and $b$, then find the value of $n$.
3. If $S_{n}$, the sum of first $n$ terms of an A.P., is given by $S_{n}=5 n^{2}+3 n$, then find its $n^{\text {th }}$ term.
4. If an A.P., the sum of first $n$ terms is $\frac{3 n^{2}}{2}+\frac{5 n}{2}$, find its $25^{\text {th }}$ term.
5. If the $m^{\text {th }}$ term of an A.P. is $\frac{1}{n}$ and the $n^{\text {th }}$ term is $\frac{1}{m}$, show that the sum of $m n$ terms is $\frac{1}{2}(m n+1)$.
6. The sum of $n, 2 n, 3 n$ terms of an A.P. are $S_{1}, S_{2}, S_{3}$ respectively, prove that $S_{3}=3\left(S_{2}-S_{1}\right)$.
7. The sums of $n$ terms of three arithmetical progressions are $S_{1}, S_{2}$ and $S_{3}$. The first term of each is unity and the common differences are 1,2 and 3 respectively, prove that $S_{1}+S_{3}=2 S_{2}$.
8. If in an A.P., the sum of $m$ terms is equal to $n$ and the sum of $n$ terms is equal to $m$, then prove that the sum of $(m+n)$ terms is $-(m+n)$.
9. If the sum of $m$ terms of an A.P. is the same as the sum of its $n$ terms, show that the sum of its $(m+n)$ terms is zero.
10.The sum of the first $p, q, r$ terms of an A.P. are $a, b, c$ respectively, show that

$$
\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0
$$

